Search results
Results from the WOW.Com Content Network
The Williamson ether synthesis is an organic reaction, forming an ether from an organohalide and a deprotonated alcohol . This reaction was developed by Alexander Williamson in 1850. [ 2 ] Typically it involves the reaction of an alkoxide ion with a primary alkyl halide via an S N 2 reaction .
Alexander Williamson. Williamson is credited for his research on the formation of unsymmetrical ethers by the interaction of an alkoxide with a haloalkane, known as the Williamson ether synthesis. He regarded ethers and alcohols as substances analogous to and built up on the same type as water, and he further introduced the water-type as a ...
Synthesis from the latter chemical is accomplished through a condensation reaction with glyoxylic acid followed by cleaving the resulting α-hydroxy acid with an oxidizing agent. [ 3 ] [ 4 ] [ 5 ] Synthesis from catechol requires an additional step, Williamson ether synthesis using dichloromethane .
Thus, elimination by E2 limits the scope of the Williamson ether synthesis (an S N 2 reaction) to essentially only 1° haloalkanes; 2° haloalkanes generally do not give synthetically useful yields, while 3° haloalkanes fail completely. With strong base, 3° haloalkanes give elimination by E2.
Usually phenol ethers are synthesized through the condensation of phenol and an organic alcohol; however, other known reactions regarding the synthesis of ethers can be applied to phenol ethers as well. Anisole (C 6 H 5 OCH 3) is the simplest phenol ether, and is a versatile precursor for perfumes and pharmaceuticals. [1]
18-Crown-6 can be synthesized by the Williamson ether synthesis using potassium ion as the template cation. Structure of nickel-aquo nitrate complex of the ligand derived from the templated trimerization of 2-aminobenzaldehyde. [5] The phosphorus analogue of an aza crown can be prepared by a template reaction. [6]
The word's meaning became restricted to "spirit of wine" (the chemical known today as ethanol) in the 18th century and was extended to the class of substances so-called as "alcohols" in modern chemistry after 1850. [16] The term ethanol was invented in 1892, blending "ethane" with the "-ol" ending of "alcohol", which was generalized as a libfix ...
A 1,2-Wittig rearrangement is a categorization of chemical reactions in organic chemistry, and consists of a 1,2-rearrangement of an ether with an alkyllithium compound. [1] The reaction is named for Nobel Prize winning chemist Georg Wittig. [2] [3] The intermediate is an alkoxy lithium salt, and the final product an alcohol.