Search results
Results from the WOW.Com Content Network
A radome avoids that by covering the antenna's exposed parts with a sturdy, weatherproof material, typically fiberglass, keeping debris or ice away from the antenna, thus preventing any serious issues. One of the main driving forces behind the development of fiberglass as a structural material was the need during World War II for radomes. [6]
In electromagnetism, a dielectric (or dielectric medium) is an electrical insulator that can be polarised by an applied electric field.When a dielectric material is placed in an electric field, electric charges do not flow through the material as they do in an electrical conductor, because they have no loosely bound, or free, electrons that may drift through the material, but instead they ...
A dielectric is an insulating material, and the dielectric constant of an insulator measures the ability of the insulator to store electric energy in an electrical field. Permittivity is a material's property that affects the Coulomb force between two point charges in the material. Relative permittivity is the factor by which the electric field ...
A liquid dielectric is a dielectric material in liquid state. Its main purpose is to prevent or rapidly quench electric discharges.Dielectric liquids are used as electrical insulators in high voltage applications, e.g. transformers, capacitors, high voltage cables, and switchgear (namely high voltage switchgear).
The theoretical dielectric strength of a material is an intrinsic property of the bulk material, and is independent of the configuration of the material or the electrodes with which the field is applied. This "intrinsic dielectric strength" corresponds to what would be measured using pure materials under ideal laboratory conditions.
A metallic lens antenna and its inventor Winston E. Kock in 1946. This structure is one of the earliest examples of artificial dielectrics. Artificial dielectrics are fabricated composite materials, often consisting of arrays of conductive shapes or particles in a nonconductive support matrix, designed to have specific electromagnetic properties similar to dielectrics.
The resonant frequency is determined by the overall physical dimensions of the resonator and the dielectric constant of the material. Dielectric resonators function similarly to cavity resonators, hollow metal boxes that are also widely used as resonators at microwave frequencies, except that the radio waves are reflected by the large change in ...
Flexoelectricity is a property of a dielectric material where there is coupling between electrical polarization and a strain gradient. This phenomenon is closely related to piezoelectricity, but while piezoelectricity refers to polarization due to uniform strain, flexoelectricity specifically involves polarization due to strain that varies from point to point in the material.