enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Closest string - Wikipedia

    en.wikipedia.org/wiki/Closest_string

    In theoretical computer science, the closest string is an NP-hard computational problem, [1] which tries to find the geometrical center of a set of input strings. To understand the word "center", it is necessary to define a distance between two strings. Usually, this problem is studied with the Hamming distance in mind.

  3. Bin packing problem - Wikipedia

    en.wikipedia.org/wiki/Bin_packing_problem

    In the guillotine cutting problem, both the items and the "bins" are two-dimensional rectangles rather than one-dimensional numbers, and the items have to be cut from the bin using end-to-end cuts. In the selfish bin packing problem, each item is a player who wants to minimize its cost. [53]

  4. NP-hardness - Wikipedia

    en.wikipedia.org/wiki/NP-hardness

    As it is suspected, but unproven, that P≠NP, it is unlikely that any polynomial-time algorithms for NP-hard problems exist. [3] [4] A simple example of an NP-hard problem is the subset sum problem. Informally, if H is NP-hard, then it is at least as difficult to solve as the problems in NP.

  5. P versus NP problem - Wikipedia

    en.wikipedia.org/wiki/P_versus_NP_problem

    Informally, an NP-complete problem is an NP problem that is at least as "tough" as any other problem in NP. NP-hard problems are those at least as hard as NP problems; i.e., all NP problems can be reduced (in polynomial time) to them. NP-hard problems need not be in NP; i.e., they need not have solutions verifiable in polynomial time.

  6. 10 Hard Math Problems That Even the Smartest People in the ...

    www.aol.com/10-hard-math-problems-even-150000090...

    Goldbach’s Conjecture. One of the greatest unsolved mysteries in math is also very easy to write. Goldbach’s Conjecture is, “Every even number (greater than two) is the sum of two primes ...

  7. Change-making problem - Wikipedia

    en.wikipedia.org/wiki/Change-making_problem

    One variation of this problem assumes that the people making change will use the "greedy algorithm" for making change, even when that requires more than the minimum number of coins. Most current currencies use a 1-2-5 series , but some other set of denominations would require fewer denominations of coins or a smaller average number of coins to ...

  8. Karp's 21 NP-complete problems - Wikipedia

    en.wikipedia.org/wiki/Karp's_21_NP-complete_problems

    In computational complexity theory, Karp's 21 NP-complete problems are a set of computational problems which are NP-complete.In his 1972 paper, "Reducibility Among Combinatorial Problems", [1] Richard Karp used Stephen Cook's 1971 theorem that the boolean satisfiability problem is NP-complete [2] (also called the Cook-Levin theorem) to show that there is a polynomial time many-one reduction ...

  9. Graph isomorphism problem - Wikipedia

    en.wikipedia.org/wiki/Graph_isomorphism_problem

    As is common for complexity classes within the polynomial time hierarchy, a problem is called GI-hard if there is a polynomial-time Turing reduction from any problem in GI to that problem, i.e., a polynomial-time solution to a GI-hard problem would yield a polynomial-time solution to the graph isomorphism problem (and so all problems in GI).