enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kinetic energy - Wikipedia

    en.wikipedia.org/wiki/Kinetic_energy

    Kinetic energy is the movement energy of an object. Kinetic energy can be transferred between objects and transformed into other kinds of energy. [10] Kinetic energy may be best understood by examples that demonstrate how it is transformed to and from other forms of energy.

  3. Molecular dynamics - Wikipedia

    en.wikipedia.org/wiki/Molecular_dynamics

    The time evolution of the energy from the original work is shown in the figure to the right. One of the earliest simulations of an N-body system was carried out on the MANIAC-I by Fermi and coworkers to understand the origins of irreversibility in nature. Shown here is the energy versus time for a 64-particle system.

  4. Enzyme kinetics - Wikipedia

    en.wikipedia.org/wiki/Enzyme_kinetics

    The study of enzyme kinetics is important for two basic reasons. Firstly, it helps explain how enzymes work, and secondly, it helps predict how enzymes behave in living organisms. The kinetic constants defined above, K M and V max, are critical to attempts to understand how enzymes work together to control metabolism.

  5. Lagrangian mechanics - Wikipedia

    en.wikipedia.org/wiki/Lagrangian_mechanics

    Kinetic energy T is the energy of the system's motion and is a function only of the velocities v k, not the positions r k, nor time t, so T = T(v 1, v 2, ...). V , the potential energy of the system, reflects the energy of interaction between the particles, i.e. how much energy any one particle has due to all the others, together with any ...

  6. Action (physics) - Wikipedia

    en.wikipedia.org/wiki/Action_(physics)

    In physics, action is a scalar quantity that describes how the balance of kinetic versus potential energy of a physical system changes with trajectory. Action is significant because it is an input to the principle of stationary action, an approach to classical mechanics that is simpler for multiple objects. [1]

  7. Kinetic theory of gases - Wikipedia

    en.wikipedia.org/wiki/Kinetic_theory_of_gases

    Thus, the ratio of the kinetic energy to the absolute temperature of an ideal monatomic gas can be calculated easily: per mole: 12.47 J/K; per molecule: 20.7 yJ/K = 129 μeV/K; At standard temperature (273.15 K), the kinetic energy can also be obtained: per mole: 3406 J; per molecule: 5.65 zJ = 35.2 meV.

  8. Motion - Wikipedia

    en.wikipedia.org/wiki/Motion

    This motion can be detected as temperature; higher temperatures, which represent greater kinetic energy in the particles, feel warm to humans who sense the thermal energy transferring from the object being touched to their nerves. Similarly, when lower temperature objects are touched, the senses perceive the transfer of heat away from the body ...

  9. Virial theorem - Wikipedia

    en.wikipedia.org/wiki/Virial_theorem

    Assuming that the masses are constant, G is one-half the time derivative of this moment of inertia: = = = = = = =. In turn, the time derivative of G is = = + = = = + = = + =, where m k is the mass of the k th particle, F k = ⁠ dp k / dt ⁠ is the net force on that particle, and T is the total kinetic energy of the system according to the v k ...