Search results
Results from the WOW.Com Content Network
In mathematics, an n th root of a number x is a number r (the root) which, when raised to the power of the positive integer n, yields x: = ⏟ =.. The integer n is called the index or degree, and the number x of which the root is taken is the radicand.
The roots of the quadratic function y = 1 / 2 x 2 − 3x + 5 / 2 are the places where the graph intersects the x-axis, the values x = 1 and x = 5.They can be found via the quadratic formula.
All quadratic equations have exactly two solutions in complex numbers (but they may be equal to each other), a category that includes real numbers, imaginary numbers, and sums of real and imaginary numbers. Complex numbers first arise in the teaching of quadratic equations and the quadratic formula. For example, the quadratic equation
A quadratic equation always has two roots, if complex roots are included and a double root is counted for two. A quadratic equation can be factored into an equivalent equation [ 3 ] a x 2 + b x + c = a ( x − r ) ( x − s ) = 0 {\displaystyle ax^{2}+bx+c=a(x-r)(x-s)=0} where r and s are the solutions for x .
A number a is a root of a polynomial P if and only if the linear polynomial x − a divides P, that is if there is another polynomial Q such that P = (x − a) Q. It may happen that a power (greater than 1) of x − a divides P; in this case, a is a multiple root of P, and otherwise a is a simple root of P.
In a wider sense, it also includes exponentiation, extraction of roots, and logarithm. [2] The term arithmetic has its root in the Latin term arithmetica which derives from the Ancient Greek words ἀριθμός (arithmos), meaning ' number ', and ἀριθμητική τέχνη (arithmetike tekhne), meaning ' the art of counting '. [3]
The other roots of the equation are obtained either by changing of cube root or, equivalently, by multiplying the cube root by a primitive cube root of unity, that is . This formula for the roots is always correct except when p = q = 0 , with the proviso that if p = 0 , the square root is chosen so that C ≠ 0 .
Second, by making the start π rather than the square root of 10, multiplying or dividing by π (as is common in science and engineering formulas) is simplified. CI, DI, CIF, DIF: inverted scales running from right to left, used to simplify reciprocal (1 ⁄ x) steps S: used for finding sines and cosines on the C (or D) scale T, T1, T2