enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Recurrence relation - Wikipedia

    en.wikipedia.org/wiki/Recurrence_relation

    A famous example is the recurrence for the Fibonacci numbers, = + where the order is two and the linear function merely adds the two previous terms. This example is a linear recurrence with constant coefficients , because the coefficients of the linear function (1 and 1) are constants that do not depend on n . {\displaystyle n.}

  3. Three-term recurrence relation - Wikipedia

    en.wikipedia.org/wiki/Three-term_recurrence_relation

    If the {} and {} are constant and independent of the step index n, then the TTRR is a Linear recurrence with constant coefficients of order 2. Arguably the simplest, and most prominent, example for this case is the Fibonacci sequence , which has constant coefficients a n = b n = 1 {\displaystyle a_{n}=b_{n}=1} .

  4. Linear recurrence with constant coefficients - Wikipedia

    en.wikipedia.org/wiki/Linear_recurrence_with...

    A linear recurrence denotes the evolution of some variable over time, with the current time period or discrete moment in time denoted as t, one period earlier denoted as t − 1, one period later as t + 1, etc. The solution of such an equation is a function of t, and not of any iterate values, giving the value of the iterate at any time.

  5. Constant-recursive sequence - Wikipedia

    en.wikipedia.org/wiki/Constant-recursive_sequence

    The order of the sequence is the smallest positive integer such that the sequence satisfies a recurrence of order d, or = for the everywhere-zero sequence. [ citation needed ] The definition above allows eventually- periodic sequences such as 1 , 0 , 0 , 0 , … {\displaystyle 1,0,0,0,\ldots } and 0 , 1 , 0 , 0 , … {\displaystyle 0,1,0,0 ...

  6. Partition function (number theory) - Wikipedia

    en.wikipedia.org/wiki/Partition_function_(number...

    Two important examples are the partitions restricted to only odd integer parts or only even integer parts, with the corresponding partition functions often denoted () and (). A theorem from Euler shows that the number of strict partitions is equal to the number of partitions with only odd parts: for all n , q ( n ) = p o ( n ) {\displaystyle q ...

  7. P-recursive equation - Wikipedia

    en.wikipedia.org/wiki/P-recursive_equation

    A sequence () is called hypergeometric if the ratio of two consecutive terms is a rational function in , i.e. (+) / (). This is the case if and only if the sequence is the solution of a first-order recurrence equation with polynomial coefficients.

  8. Eulerian number - Wikipedia

    en.wikipedia.org/wiki/Eulerian_number

    The Eulerian number of the second order, denoted , counts the number of all such permutations that have exactly m ascents. For instance, for n = 3 there are 15 such permutations, 1 with no ascents, 8 with a single ascent, and 6 with two ascents:

  9. Chebyshev equation - Wikipedia

    en.wikipedia.org/wiki/Chebyshev_equation

    The series converges for | | < (note, x may be complex), as may be seen by applying the ratio test to the recurrence. The recurrence may be started with arbitrary values of a 0 and a 1, leading to the two-dimensional space of solutions that arises from second order differential equations. The standard choices are: