enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Chord (geometry) - Wikipedia

    en.wikipedia.org/wiki/Chord_(geometry)

    The chord function can be related to the modern sine function, by taking one of the points to be (1,0), and the other point to be (cos θ, sin θ), and then using the Pythagorean theorem to calculate the chord length: [2]

  3. Intersecting chords theorem - Wikipedia

    en.wikipedia.org/wiki/Intersecting_chords_theorem

    The value of the two products in the chord theorem depends only on the distance of the intersection point S from the circle's center and is called the absolute value of the power of S; more precisely, it can be stated that: | | | | = | | | | = where r is the radius of the circle, and d is the distance between the center of the circle and the ...

  4. Circular segment - Wikipedia

    en.wikipedia.org/wiki/Circular_segment

    In the design of windows or doors with rounded tops, c and h may be the only known values and can be used to calculate R for the draftsman's compass setting. One can reconstruct the full dimensions of a complete circular object from fragments by measuring the arc length and the chord length of the fragment. To check hole positions on a circular ...

  5. Great-circle distance - Wikipedia

    en.wikipedia.org/wiki/Great-circle_distance

    For modern 64-bit floating-point numbers, the spherical law of cosines formula, given above, does not have serious rounding errors for distances larger than a few meters on the surface of the Earth. [3] The haversine formula is numerically better-conditioned for small distances by using the chord-length relation: [4]

  6. Constant chord theorem - Wikipedia

    en.wikipedia.org/wiki/Constant_chord_theorem

    The constant chord theorem is a statement in elementary geometry about a property of certain chords in two intersecting circles. The circles k 1 {\displaystyle k_{1}} and k 2 {\displaystyle k_{2}} intersect in the points P {\displaystyle P} and Q {\displaystyle Q} .

  7. Degree of curvature - Wikipedia

    en.wikipedia.org/wiki/Degree_of_curvature

    Where degree of curvature is based on 100 units of arc length, the conversion between degree of curvature and radius is Dr = 18000/π ≈ 5729.57795, where D is degree and r is radius. Since rail routes have very large radii, they are laid out in chords, as the difference to the arc is inconsequential; this made work easier before electronic ...

  8. Sagitta (geometry) - Wikipedia

    en.wikipedia.org/wiki/Sagitta_(geometry)

    When the sagitta is small in comparison to the radius, it may be approximated by the formula [2] s ≈ l 2 8 r . {\displaystyle s\approx {\frac {l^{2}}{8r}}.} Alternatively, if the sagitta is small and the sagitta, radius, and chord length are known, they may be used to estimate the arc length by the formula

  9. Arc length - Wikipedia

    en.wikipedia.org/wiki/Arc_length

    Arc length s of a logarithmic spiral as a function of its parameter θ. Arc length is the distance between two points along a section of a curve. Determining the length of an irregular arc segment by approximating the arc segment as connected (straight) line segments is also called curve rectification.