enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Matching (statistics) - Wikipedia

    en.wikipedia.org/wiki/Matching_(statistics)

    The goal of matching is to reduce bias for the estimated treatment effect in an observational-data study, by finding, for every treated unit, one (or more) non-treated unit(s) with similar observable characteristics against which the covariates are balanced out (similar to the K-nearest neighbors algorithm).

  3. Controlling for a variable - Wikipedia

    en.wikipedia.org/wiki/Controlling_for_a_variable

    For example, if an outdoor experiment were to be conducted to compare how different wing designs of a paper airplane (the independent variable) affect how far it can fly (the dependent variable), one would want to ensure that the experiment is conducted at times when the weather is the same, because one would not want weather to affect the ...

  4. Propensity score matching - Wikipedia

    en.wikipedia.org/wiki/Propensity_score_matching

    The "propensity" describes how likely a unit is to have been treated, given its covariate values. The stronger the confounding of treatment and covariates, and hence the stronger the bias in the analysis of the naive treatment effect, the better the covariates predict whether a unit is treated or not.

  5. Confounding - Wikipedia

    en.wikipedia.org/wiki/Confounding

    An operational confounding can occur in both experimental and non-experimental research designs. This type of confounding occurs when a measure designed to assess a particular construct inadvertently measures something else as well. [20] A procedural confounding can occur in a laboratory experiment or a quasi-experiment. This type of confound ...

  6. Paired difference test - Wikipedia

    en.wikipedia.org/wiki/Paired_difference_test

    By pairing students whose values on the confounding variables are similar, a greater fraction of the difference in the value of interest (e.g. the standardized test score in the example discussed above), is due to the factor of interest, and a lesser fraction is due to the confounder.

  7. Spurious relationship - Wikipedia

    en.wikipedia.org/wiki/Spurious_relationship

    Graphical model: Whereas a mediator is a factor in the causal chain (top), a confounder is a spurious factor incorrectly implying causation (bottom). In statistics, a spurious relationship or spurious correlation [1] [2] is a mathematical relationship in which two or more events or variables are associated but not causally related, due to either coincidence or the presence of a certain third ...

  8. Bias (statistics) - Wikipedia

    en.wikipedia.org/wiki/Bias_(statistics)

    Statistical bias exists in numerous stages of the data collection and analysis process, including: the source of the data, the methods used to collect the data, the estimator chosen, and the methods used to analyze the data. Data analysts can take various measures at each stage of the process to reduce the impact of statistical bias in their ...

  9. Omitted-variable bias - Wikipedia

    en.wikipedia.org/wiki/Omitted-variable_bias

    The bias results in the model attributing the effect of the missing variables to those that were included. More specifically, OVB is the bias that appears in the estimates of parameters in a regression analysis , when the assumed specification is incorrect in that it omits an independent variable that is a determinant of the dependent variable ...