Search results
Results from the WOW.Com Content Network
Replication is fundamental for scientific progress to confirm original findings. However, replication alone is not sufficient to resolve the replication crisis. Replication efforts should seek not just to support or question the original findings, but also to replace them with revised, stronger theories with greater explanatory power.
Replication stress and its consequences in mitosis. DNA replication stress refers to the state of a cell whose genome is exposed to various stresses. The events that contribute to replication stress occur during DNA replication, and can result in a stalled replication fork. [1] There are many events that contribute to replication stress ...
The replication of DNA with a broken sugar-phosphate backbone is most likely facilitated by the homologous recombination proteins that confer resistance to ionizing radiation. The activity of PRR enzymes is regulated by the SOS response in bacteria and may be controlled by the postreplication checkpoint response in eukaryotes.
Replication machineries consist of factors involved in DNA replication and appearing on template ssDNAs. Replication machineries include primosotors are replication ...
DSBs caused by the replication machinery attempting to synthesize across a single-strand break or unrepaired lesion cause collapse of the replication fork and are typically repaired by recombination. In an in vitro system, MMEJ occurred in mammalian cells at the levels of 10–20% of HR when both HR and NHEJ mechanisms were also available. [32]
Replication timing refers to the order in which segments of DNA along the length of a chromosome are duplicated. DNA replication. Figure 2: ...
In eukaryotes, the cell cycle consists of four main stages: G 1, during which a cell is metabolically active and continuously grows; S phase, during which DNA replication takes place; G 2, during which cell growth continues and the cell synthesizes various proteins in preparation for division; and the M phase, during which the duplicated ...
Slipped strand mispairing (SSM, also known as replication slippage) is a mutation process which occurs during DNA replication. It involves denaturation and displacement of the DNA strands, resulting in mispairing of the complementary bases. Slipped strand mispairing is one explanation for the origin and evolution of repetitive DNA sequences. [1]