Search results
Results from the WOW.Com Content Network
Group 1: Alkali metals Reaction of sodium (Na) and water Reaction of potassium (K) in water. The alkali metals (Li, Na, K, Rb, Cs, and Fr) are the most reactive metals in the periodic table - they all react vigorously or even explosively with cold water, resulting in the displacement of hydrogen.
The most reactive metals, such as sodium, will react with cold water to produce hydrogen and the metal hydroxide: 2 Na (s) + 2 H 2 O (l) →2 NaOH (aq) + H 2 (g) Metals in the middle of the reactivity series, such as iron , will react with acids such as sulfuric acid (but not water at normal temperatures) to give hydrogen and a metal salt ...
Rust is an iron oxide, a usually reddish-brown oxide formed by the reaction of iron and oxygen in the catalytic presence of water or air moisture.Rust consists of hydrous iron(III) oxides (Fe 2 O 3 ·nH 2 O) and iron(III) oxide-hydroxide (FeO(OH), Fe(OH) 3), and is typically associated with the corrosion of refined iron.
Iron reacts readily with oxygen and water to produce brown-to-black hydrated iron oxides, commonly known as rust. Unlike the oxides of some other metals that form passivating layers, rust occupies more volume than the metal and thus flakes off, exposing more fresh surfaces for corrosion.
The iron and steel industry is thus very important economically, and iron is the cheapest metal, with a price of a few dollars per kilogram or pound. Pristine and smooth pure iron surfaces are a mirror-like silvery-gray. Iron reacts readily with oxygen and water to produce brown-to-black hydrated iron oxides, commonly known as rust.
The alkali metals also react with water to form strongly alkaline hydroxides and thus should be handled with great care. The heavier alkali metals react more vigorously than the lighter ones; for example, when dropped into water, caesium produces a larger explosion than potassium if the same number of moles of each metal is used.
Metal aqua ions are often involved in the formation of complexes. The reaction may be written as pM x+ (aq) + qL y− → [M p L q] (px-qy)+ In reality this is a substitution reaction in which one or more water molecules from the first hydration shell of the metal ion are replaced by ligands, L. The complex is described as an inner-sphere complex.
The ferrous halides typically arise from treating iron metal with the corresponding hydrohalic acid to give the corresponding hydrated salts. [7] Fe + 2 HX → FeX 2 + H 2 (X = F, Cl, Br, I) Iron reacts with fluorine, chlorine, and bromine to give the corresponding ferric halides, ferric chloride being the most common. [13]