enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Binary-coded decimal - Wikipedia

    en.wikipedia.org/wiki/Binary-coded_decimal

    In this clock, each column of LEDs shows a binary-coded decimal numeral of the traditional sexagesimal time. In computing and electronic systems, binary-coded decimal (BCD) is a class of binary encodings of decimal numbers where each digit is represented by a fixed number of bits, usually four or eight.

  3. Binary number - Wikipedia

    en.wikipedia.org/wiki/Binary_number

    To convert a hexadecimal number into its binary equivalent, simply substitute the corresponding binary digits: 3A 16 = 0011 1010 2 E7 16 = 1110 0111 2. To convert a binary number into its hexadecimal equivalent, divide it into groups of four bits. If the number of bits isn't a multiple of four, simply insert extra 0 bits at the left (called ...

  4. Two's complement - Wikipedia

    en.wikipedia.org/wiki/Two's_complement

    Two's complement is the most common method of representing signed (positive, negative, and zero) integers on computers, [1] and more generally, fixed point binary values. Two's complement uses the binary digit with the greatest value as the sign to indicate whether the binary number is positive or negative; when the most significant bit is 1 the number is signed as negative and when the most ...

  5. Computer number format - Wikipedia

    en.wikipedia.org/wiki/Computer_number_format

    That is, the value of an octal "10" is the same as a decimal "8", an octal "20" is a decimal "16", and so on. In a hexadecimal system, there are 16 digits, 0 through 9 followed, by convention, with A through F. That is, a hexadecimal "10" is the same as a decimal "16" and a hexadecimal "20" is the same as a decimal "32".

  6. Half-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Half-precision_floating...

    The half-precision binary floating-point exponent is encoded using an offset-binary representation, with the zero offset being 15; also known as exponent bias in the IEEE 754 standard. [9] E min = 00001 2 − 01111 2 = −14; E max = 11110 2 − 01111 2 = 15; Exponent bias = 01111 2 = 15

  7. Hexadecimal - Wikipedia

    en.wikipedia.org/wiki/Hexadecimal

    Hexadecimal (also known as base-16 or simply hex) is a positional numeral system that represents numbers using a radix (base) of sixteen. Unlike the decimal system representing numbers using ten symbols, hexadecimal uses sixteen distinct symbols, most often the symbols "0"–"9" to represent values 0 to 9 and "A"–"F" to represent values from ten to fifteen.

  8. Base64 - Wikipedia

    en.wikipedia.org/wiki/Base64

    Hexadecimal to octal transformation is useful to convert between binary and Base64. Such conversion is available for both advanced calculators and programming languages. For example, the hexadecimal representation of the 24 bits above is 4D616E. The octal representation is 23260556. Those 8 octal digits can be split into pairs (23 26 05 56 ...

  9. Java syntax - Wikipedia

    en.wikipedia.org/wiki/Java_syntax

    binary (introduced in Java SE 7) 0b11110101 (0b followed by a binary number) octal: 0365 (0 followed by an octal number) hexadecimal: 0xF5 (0x followed by a hexadecimal number) decimal: 245 (decimal number) Floating-point values float 23.5F, .5f, 1.72E3F (decimal fraction with an optional exponent indicator, followed by F)