enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Vieta's formulas - Wikipedia

    en.wikipedia.org/wiki/Vieta's_formulas

    Vieta's formulas can equivalently be written as < < < (=) = for k = 1, 2, ..., n (the indices i k are sorted in increasing order to ensure each product of k roots is used exactly once). The left-hand sides of Vieta's formulas are the elementary symmetric polynomials of the roots.

  3. Erdős–Szemerédi theorem - Wikipedia

    en.wikipedia.org/wiki/Erdős–Szemerédi_theorem

    The sum-product conjecture informally says that one of the sum set or the product set of any set must be nearly as large as possible. It was originally conjectured by Erdős in 1974 to hold whether A is a set of integers, reals, or complex numbers. [3] More precisely, it proposes that, for any set A ⊂ ℂ, one has

  4. Square-root sum problem - Wikipedia

    en.wikipedia.org/wiki/Square-root_sum_problem

    The problem is mentioned in the Open Problems Garden. [4] Blomer [5] presents a polynomial-time Monte Carlo algorithm for deciding whether a sum of square roots equals zero. The algorithm applies more generally, to any sum of radicals.

  5. Sum of radicals - Wikipedia

    en.wikipedia.org/wiki/Sum_of_radicals

    In mathematics, a sum of radicals is defined as a finite linear combination of n th roots: =, where , are natural numbers and , are real numbers.. A particular special case arising in computational complexity theory is the square-root sum problem, asking whether it is possible to determine the sign of a sum of square roots, with integer coefficients, in polynomial time.

  6. Newton's identities - Wikipedia

    en.wikipedia.org/wiki/Newton's_identities

    Denoting by h k the complete homogeneous symmetric polynomial (that is, the sum of all monomials of degree k), the power sum polynomials also satisfy identities similar to Newton's identities, but not involving any minus signs.

  7. Ramanujan's sum - Wikipedia

    en.wikipedia.org/wiki/Ramanujan's_sum

    Therefore, there are φ(q) primitive q-th roots of unity. Thus, the Ramanujan sum c q (n) is the sum of the n-th powers of the primitive q-th roots of unity. It is a fact [3] that the powers of ζ q are precisely the primitive roots for all the divisors of q. Example. Let q = 12. Then

  8. Basel problem - Wikipedia

    en.wikipedia.org/wiki/Basel_problem

    The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares. It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, [ 1 ] and read on 5 December 1735 in The Saint Petersburg Academy of Sciences . [ 2 ]

  9. Gauss's lemma (polynomials) - Wikipedia

    en.wikipedia.org/wiki/Gauss's_lemma_(polynomials)

    The term a r b s is not divisible by p (because p is prime), yet all the remaining ones are, so the entire sum cannot be divisible by p. By assumption all coefficients in the product are divisible by p, leading to a contradiction. Therefore, the coefficients of the product can have no common divisor and are thus primitive.