Search results
Results from the WOW.Com Content Network
The word chirality is derived from the Greek χείρ (kheir), "hand", a familiar chiral object. An object or a system is chiral if it is distinguishable from its mirror image; that is, it cannot be superposed (not to be confused with superimposed) onto it. Conversely, a mirror image of an achiral object, such as a sphere, cannot be ...
An achiral molecule having chiral conformations could theoretically form a mixture of right-handed and left-handed crystals, as often happens with racemic mixtures of chiral molecules (see Chiral resolution#Spontaneous resolution and related specialized techniques), or as when achiral liquid silicon dioxide is cooled to the point of becoming ...
An object that is not chiral is said to be achiral. A chiral object and its mirror image are said to be enantiomorphs. The word chirality is derived from the Greek χείρ (cheir), the hand, the most familiar chiral object; the word enantiomorph stems from the Greek ἐναντίος (enantios) 'opposite' + μορφή (morphe) 'form'.
The term chiral / ˈ k aɪ r əl / describes an object, especially a molecule, which has or produces a non-superposable mirror image of itself. In chemistry , such a molecule is called an enantiomer or is said to exhibit chirality or enantiomerism .
A scalar field model encoding chiral symmetry and its breaking is the chiral model. The most common application is expressed as equal treatment of clockwise and counter-clockwise rotations from a fixed frame of reference. The general principle is often referred to by the name chiral symmetry.
Homochirality is a uniformity of chirality, or handedness.Objects are chiral when they cannot be superposed on their mirror images. For example, the left and right hands of a human are approximately mirror images of each other but are not their own mirror images, so they are chiral.
An object having symmetry group D n, D nh, or D nd has rotation group D n. An object having a polyhedral symmetry (T, T d, T h, O, O h, I or I h) has as its rotation group the corresponding one without a subscript: T, O or I. The rotation group of an object is equal to its full symmetry group if and only if the object is chiral. In other words ...
Point groups can be classified into chiral (or purely rotational) groups and achiral groups. [1] The chiral groups are subgroups of the special orthogonal group SO(d): they contain only orientation-preserving orthogonal transformations, i.e., those of determinant +1. The achiral groups contain also transformations of determinant −1.