enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Minimum redundancy feature selection - Wikipedia

    en.wikipedia.org/wiki/Minimum_redundancy_feature...

    Minimum redundancy feature selection is an algorithm frequently used in a method to accurately identify characteristics of genes and phenotypes and narrow down their relevance and is usually described in its pairing with relevant feature selection as Minimum Redundancy Maximum Relevance (mRMR).

  3. Mutual information - Wikipedia

    en.wikipedia.org/wiki/Mutual_information

    Mutual information has been used as a criterion for feature selection and feature transformations in machine learning. It can be used to characterize both the relevance and redundancy of variables, such as the minimum redundancy feature selection. Mutual information is used in determining the similarity of two different clusterings of a dataset.

  4. Redundancy (information theory) - Wikipedia

    en.wikipedia.org/wiki/Redundancy_(information...

    The quantity is called the relative redundancy and gives the maximum possible data compression ratio, when expressed as the percentage by which a file size can be decreased. (When expressed as a ratio of original file size to compressed file size, the quantity R : r {\displaystyle R:r} gives the maximum compression ratio that can be achieved.)

  5. Theoretical computer science - Wikipedia

    en.wikipedia.org/wiki/Theoretical_computer_science

    Machine learning can be considered a subfield of computer science and statistics. It has strong ties to artificial intelligence and optimization, which deliver methods, theory and application domains to the field. Machine learning is employed in a range of computing tasks where designing and programming explicit, rule-based algorithms is

  6. Neural network (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Neural_network_(machine...

    Neural networks are typically trained through empirical risk minimization.This method is based on the idea of optimizing the network's parameters to minimize the difference, or empirical risk, between the predicted output and the actual target values in a given dataset. [4]

  7. Machine learning - Wikipedia

    en.wikipedia.org/wiki/Machine_learning

    Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data, and thus perform tasks without explicit instructions. [1]

  8. Error correction code - Wikipedia

    en.wikipedia.org/wiki/Error_correction_code

    [4] [5] The redundancy allows the receiver not only to detect errors that may occur anywhere in the message, but often to correct a limited number of errors. Therefore a reverse channel to request re-transmission may not be needed. The cost is a fixed, higher forward channel bandwidth.

  9. Data compression - Wikipedia

    en.wikipedia.org/wiki/Data_compression

    Data compression aims to reduce the size of data files, enhancing storage efficiency and speeding up data transmission. K-means clustering, an unsupervised machine learning algorithm, is employed to partition a dataset into a specified number of clusters, k, each represented by the centroid of its points. This process condenses extensive ...