Search results
Results from the WOW.Com Content Network
Using the XOR swap algorithm to exchange nibbles between variables without the use of temporary storage. In computer programming, the exclusive or swap (sometimes shortened to XOR swap) is an algorithm that uses the exclusive or bitwise operation to swap the values of two variables without using the temporary variable which is normally required.
After swap() is performed, x will contain the value 0 and y will contain 1; their values have been exchanged. This operation may be generalized to other types of values, such as strings and aggregated data types. Comparison sorts use swaps to change the positions of data. In many programming languages the swap function is built-in.
A map of the 24 permutations and the 23 swaps used in Heap's algorithm permuting the four letters A (amber), B (blue), C (cyan) and D (dark red) Wheel diagram of all permutations of length = generated by Heap's algorithm, where each permutation is color-coded (1=blue, 2=green, 3=yellow, 4=red).
More efficient algorithms such as quicksort, timsort, or merge sort are used by the sorting libraries built into popular programming languages such as Python and Java. [ 2 ] [ 3 ] However, if parallel processing is allowed, bubble sort sorts in O(n) time, making it considerably faster than parallel implementations of insertion sort or selection ...
Select a random number j from 1 to 8, and then swap the jth and 8th letters. So, if the random number is 6, for example, swap the 6th and 8th letters in the list ...
The simplest form goes through the whole list each time: procedure cocktailShakerSort(A : list of sortable items) is do swapped := false for each i in 0 to length(A) − 1 do: if A[i] > A[i + 1] then // test whether the two elements are in the wrong order swap(A[i], A[i + 1]) // let the two elements change places swapped := true end if end for if not swapped then // we can exit the outer loop ...
The following is a dynamic programming implementation (with Python 3) which uses a matrix to keep track of the optimal solutions to sub-problems, and returns the minimum number of coins, or "Infinity" if there is no way to make change with the coins given. A second matrix may be used to obtain the set of coins for the optimal solution.
Is a generalisation of normal compare-and-swap. It can be used to atomically swap an arbitrary number of arbitrarily located memory locations. Usually, multi-word compare-and-swap is implemented in software using normal double-wide compare-and-swap operations. [16] The drawback of this approach is a lack of scalability. Persistent compare-and-swap