enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Udwadia–Kalaba formulation - Wikipedia

    en.wikipedia.org/wiki/Udwadia–Kalaba_formulation

    In classical mechanics, the Udwadia–Kalaba formulation is a method for deriving the equations of motion of a constrained mechanical system. [1] [2] The method was first described by Anatolii Fedorovich Vereshchagin [3] [4] for the particular case of robotic arms, and later generalized to all mechanical systems by Firdaus E. Udwadia and Robert E. Kalaba in 1992. [5]

  3. Paden–Kahan subproblems - Wikipedia

    en.wikipedia.org/wiki/Paden–Kahan_subproblems

    Paden–Kahan subproblems are a set of solved geometric problems which occur frequently in inverse kinematics of common robotic manipulators. [1] Although the set of problems is not exhaustive, it may be used to simplify inverse kinematic analysis for many industrial robots. [2] Beyond the three classical subproblems several others have been ...

  4. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  5. Kinematics - Wikipedia

    en.wikipedia.org/wiki/Kinematics

    [4] [5] [6] A kinematics problem begins by describing the geometry of the system and declaring the initial conditions of any known values of position, velocity and/or acceleration of points within the system. Then, using arguments from geometry, the position, velocity and acceleration of any unknown parts of the system can be determined.

  6. Inverse kinematics - Wikipedia

    en.wikipedia.org/wiki/Inverse_kinematics

    An analytic solution to an inverse kinematics problem is a closed-form expression that takes the end-effector pose as input and gives joint positions as output, = (). Analytical inverse kinematics solvers can be significantly faster than numerical solvers and provide more than one solution, but only a finite number of solutions, for a given end ...

  7. Kinematics equations - Wikipedia

    en.wikipedia.org/wiki/Kinematics_equations

    The second called inverse kinematics uses the position and orientation of the end-effector to compute the joint parameters values. Remarkably, while the forward kinematics of a serial chain is a direct calculation of a single matrix equation, the forward kinematics of a parallel chain requires the simultaneous solution of multiple matrix ...

  8. Levenberg–Marquardt algorithm - Wikipedia

    en.wikipedia.org/wiki/Levenberg–Marquardt...

    These minimization problems arise especially in least squares curve fitting. The LMA interpolates between the Gauss–Newton algorithm (GNA) and the method of gradient descent. The LMA is more robust than the GNA, which means that in many cases it finds a solution even if it starts very far off the final minimum. For well-behaved functions and ...

  9. Analytical mechanics - Wikipedia

    en.wikipedia.org/wiki/Analytical_mechanics

    The two-body problem is solved by formulas involving parameters; their values can be changed to study the class of all solutions, that is, the mathematical structure of the problem. Moreover, an accurate mental or drawn picture can be made for the motion of two bodies, and it can be as real and accurate as the real bodies moving and interacting.