Search results
Results from the WOW.Com Content Network
A perfect binary tree is a binary tree in which all interior nodes have two children and all leaves have the same depth or same level (the level of a node defined as the number of edges or links from the root node to a node). [18]
To traverse arbitrary trees (not necessarily binary trees) with depth-first search, perform the following operations at each node: If the current node is empty then return. Visit the current node for pre-order traversal. For each i from 1 to the current node's number of subtrees − 1, or from the latter to the former for reverse traversal, do:
In a binary search tree, each node is associated with a search key, and the left-to-right ordering is required to be consistent with the order of the keys. [2] A tree rotation is an operation that changes the structure of a binary tree without changing its left-to-right ordering. Several self-balancing binary search tree data structures use ...
If the two trees are balanced, join simply creates a new node with left subtree t 1, root k and right subtree t 2. Suppose that t 1 is heavier (this "heavier" depends on the balancing scheme) than t 2 (the other case is symmetric). Join follows the right spine of t 1 until a node c which is balanced with t 2.
This unsorted tree has non-unique values (e.g., the value 2 existing in different nodes, not in a single node only) and is non-binary (only up to two children nodes per parent node in a binary tree). The root node at the top (with the value 2 here), has no parent as it is the highest in the tree hierarchy.
Fig. 1: A binary search tree of size 9 and depth 3, with 8 at the root. In computer science, a binary search tree (BST), also called an ordered or sorted binary tree, is a rooted binary tree data structure with the key of each internal node being greater than all the keys in the respective node's left subtree and less than the ones in its right subtree.
The NIST Dictionary of Algorithms and Data Structures [1] is a reference work maintained by the U.S. National Institute of Standards and Technology.It defines a large number of terms relating to algorithms and data structures.
A weight-balanced tree is a binary search tree that stores the sizes of subtrees in the nodes. That is, a node has fields key, of any ordered type; value (optional, only for mappings) left, right, pointer to node; size, of type integer. By definition, the size of a leaf (typically represented by a nil pointer) is zero.