Search results
Results from the WOW.Com Content Network
The far-field pattern of an antenna may be determined experimentally at an antenna range, or alternatively, the near-field pattern may be found using a near-field scanner, and the radiation pattern deduced from it by computation. [1] The far-field radiation pattern can also be calculated from the antenna shape by computer programs such as NEC.
The green ball is the radiation pattern of an isotropic antenna which radiates the same total power, and is the power density it radiates. The gain of the first antenna is . Since the directive antenna radiates the same total power within a small angle along the z axis, it can have a higher signal strength in that direction than the isotropic ...
Typical antenna parameters are gain, bandwidth, radiation pattern, beamwidth, polarization, impedance; These are imperative communicative means. The antenna pattern is the response of the antenna to a plane wave incident from a given direction or the relative power density of the wave transmitted by the antenna in a given direction. For a ...
Omnidirectional radiation patterns are produced by the simplest practical antennas, monopole and dipole antennas, consisting of one or two straight rod conductors on a common axis. Antenna gain (G) is defined as antenna efficiency (e) multiplied by antenna directivity (D) which is expressed mathematically as: =.
Patch antenna gain pattern. A directional antenna or beam antenna is an antenna which radiates or receives greater radio wave power in specific directions. Directional antennas can radiate radio waves in beams, when greater concentration of radiation in a certain direction is desired, or in receiving antennas receive radio waves from one specific direction only.
In antenna engineering, sidelobes are the lobes (local maxima) of the far field radiation pattern of an antenna or other radiation source, that are not the main lobe.. The radiation pattern of most antennas shows a pattern of "lobes" at various angles, directions where the radiated signal strength reaches a maximum, separated by "nulls", angles at which the radiated signal strength falls to zero.
In contrast to an isotropic antenna, the dipole has a "donut-shaped" radiation pattern, its radiated power is maximum in directions perpendicular to the antenna, declining to zero on the antenna axis. Since the radiation of the dipole is concentrated in horizontal directions, the gain of a half-wave dipole is greater than that of an isotropic ...
The radiation of many antennas shows a pattern of maxima or "lobes" at various angles, separated by "nulls", angles where the radiation falls to zero. This is because the radio waves emitted by different parts of the antenna typically interfere , causing maxima at angles where the radio waves arrive at distant points in phase , and zero ...