Search results
Results from the WOW.Com Content Network
In mathematics, the symmetric difference of two sets, also known as the disjunctive union and set sum, is the set of elements which are in either of the sets, but not in their intersection. For example, the symmetric difference of the sets {,,} and {,} is {,,}.
Symmetric difference = {: ()} is sometimes associated with exclusive or (xor) (also sometimes denoted by ), in which case if the order of precedence from highest to lowest is ,,, then the order of precedence (from highest to lowest) for the set operators would be , ,,.
Discrete symmetries sometimes involve some type of 'swapping', these swaps usually being called reflections or interchanges. In mathematics and theoretical physics, a discrete symmetry is a symmetry under the transformations of a discrete group—e.g. a topological group with a discrete topology whose elements form a finite or a countable set.
Symmetric difference of sets A and B, denoted A B or A ⊖ B, is the set of all objects that are a member of exactly one of A and B (elements which are in one of the sets, but not in both). For instance, for the sets {1, 2, 3} and {2, 3, 4}, the symmetric difference set is {1, 4}.
The finite difference of higher orders can be defined in recursive manner as Δ n h ≡ Δ h (Δ n − 1 h) . Another equivalent definition is Δ n h ≡ [T h − I ] n . The difference operator Δ h is a linear operator, as such it satisfies Δ h [ α f + β g ](x) = α Δ h [ f ](x) + β Δ h [g](x) . It also satisfies a special Leibniz rule:
Symmetric difference – Elements in exactly one of two sets; ... Discrete Mathematics and Its Applications (Sixth ed.). Boston: McGraw-Hill.
Discrete mathematics is the study of mathematical structures that are fundamentally discrete rather than continuous.In contrast to real numbers that have the property of varying "smoothly", the objects studied in discrete mathematics – such as integers, graphs, and statements in logic [1] – do not vary smoothly in this way, but have distinct, separated values. [2]
Discrete mathematics is the study of mathematical structures that can be considered "discrete" (in a way analogous to discrete variables, having a bijection with the set of natural numbers) rather than "continuous" (analogously to continuous functions).