Search results
Results from the WOW.Com Content Network
The question about how many vertices/watchmen/guards were needed, was posed to Chvátal by Victor Klee in 1973. [1] Chvátal proved it shortly thereafter. [2] Chvátal's proof was later simplified by Steve Fisk, via a 3-coloring argument. [3] Chvátal has a more geometrical approach, whereas Fisk uses well-known results from Graph theory.
The result, x 2, is a "better" approximation to the system's solution than x 1 and x 0. If exact arithmetic were to be used in this example instead of limited-precision, then the exact solution would theoretically have been reached after n = 2 iterations ( n being the order of the system).
This computer-programming -related article is a stub. You can help Wikipedia by expanding it.
A plot of the smoothstep(x) and smootherstep(x) functions, using 0 as the left edge and 1 as the right edgeSmoothstep is a family of sigmoid-like interpolation and clamping functions commonly used in computer graphics, [1] [2] video game engines, [3] and machine learning.
The elements of an arithmetico-geometric sequence () are the products of the elements of an arithmetic progression (in blue) with initial value and common difference , = + (), with the corresponding elements of a geometric progression (in green) with initial value and common ratio , =, so that [4]
Using low-degree polynomials over a finite field of size , it is possible to extend the definition of Reed–Muller codes to alphabets of size .Let and be positive integers, where should be thought of as larger than .
As the integrand is the third-degree polynomial y(x) = 7x 3 – 8x 2 – 3x + 3, the 2-point Gaussian quadrature rule even returns an exact result. In numerical analysis , an n -point Gaussian quadrature rule , named after Carl Friedrich Gauss , [ 1 ] is a quadrature rule constructed to yield an exact result for polynomials of degree 2 n − 1 ...
(The expression in parentheses is just (,) in the notation of the general method above.) So a solution of the original initial value problem is obtained by starting with a solution to the problem with the same prescribed initial values problem but with zero initial displacement, and adding to that (integrating) the contributions from the added ...