Search results
Results from the WOW.Com Content Network
In mathematics, the degree of a polynomial is the highest of the degrees of the polynomial's monomials (individual terms) with non-zero coefficients. The degree of a term is the sum of the exponents of the variables that appear in it, and thus is a non-negative integer.
For higher degrees, the specific names are not commonly used, although quartic polynomial (for degree four) and quintic polynomial (for degree five) are sometimes used. The names for the degrees may be applied to the polynomial or to its terms. For example, the term 2x in x 2 + 2x + 1 is a linear term in a quadratic polynomial.
The degree is the sum of the exponents on the variables; in this example, = + + A homogeneous polynomial is a polynomial made up of a sum of monomials of the same degree. For example, + + is a homogeneous polynomial of degree 5. Homogeneous polynomials also define homogeneous functions.
In mathematics, the order of a polynomial may refer to: the degree of a polynomial, that is, the largest exponent (for a univariate polynomial) or the largest sum of exponents (for a multivariate polynomial) in any of its monomials; the multiplicative order, that is, the number of times the polynomial is divisible by some value;
In mathematics, a quintic function is a function of the form = + + + + +, where a, b, c ... In other words, a quintic function is defined by a polynomial of degree five.
In mathematics, a homogeneous polynomial, sometimes called quantic in older texts, is a polynomial whose nonzero terms all have the same degree. [1] For example, x 5 + 2 x 3 y 2 + 9 x y 4 {\displaystyle x^{5}+2x^{3}y^{2}+9xy^{4}} is a homogeneous polynomial of degree 5, in two variables; the sum of the exponents in each term is always 5.
For example, a polynomial of degree n has a pole of degree n at infinity. The complex plane extended by a point at infinity is called the Riemann sphere. If f is a function that is meromorphic on the whole Riemann sphere, then it has a finite number of zeros and poles, and the sum of the orders of its poles equals the sum of the orders of its ...
In numerical analysis, polynomial interpolation is the interpolation of a given bivariate data set by the polynomial of lowest possible degree that passes through the points of the dataset. [ 1 ] Given a set of n + 1 data points (