enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Degree of a polynomial - Wikipedia

    en.wikipedia.org/wiki/Degree_of_a_polynomial

    For polynomials in two or more variables, the degree of a term is the sum of the exponents of the variables in the term; the degree (sometimes called the total degree) of the polynomial is again the maximum of the degrees of all terms in the polynomial. For example, the polynomial x 2 y 2 + 3x 3 + 4y has degree 4, the same degree as the term x ...

  3. Polynomial - Wikipedia

    en.wikipedia.org/wiki/Polynomial

    Polynomials of small degree have been given specific names. A polynomial of degree zero is a constant polynomial, or simply a constant. Polynomials of degree one, two or three are respectively linear polynomials, quadratic polynomials and cubic polynomials. [8]

  4. Order of a polynomial - Wikipedia

    en.wikipedia.org/wiki/Order_of_a_polynomial

    the multiplicative order, that is, the number of times the polynomial is divisible by some value; the order of the polynomial considered as a power series, that is, the degree of its non-zero term of lowest degree; or; the order of a spline, either the degree+1 of the polynomials defining the spline or the number of knot points used to ...

  5. Monomial - Wikipedia

    en.wikipedia.org/wiki/Monomial

    The degree of a monomial is defined as the sum of all the exponents of the variables, including the implicit exponents of 1 for the variables which appear without exponent; e.g., in the example of the previous section, the degree is + +. The degree of is 1+1+2=4. The degree of a nonzero constant is 0.

  6. Polynomial greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Polynomial_greatest_common...

    In algebra, the greatest common divisor (frequently abbreviated as GCD) of two polynomials is a polynomial, of the highest possible degree, that is a factor of both the two original polynomials. This concept is analogous to the greatest common divisor of two integers.

  7. Vieta's formulas - Wikipedia

    en.wikipedia.org/wiki/Vieta's_formulas

    Any general polynomial of degree n = + + + + (with the coefficients being real or complex numbers and a n ≠ 0) has n (not necessarily distinct) complex roots r 1, r 2, ..., r n by the fundamental theorem of algebra.

  8. Descartes' rule of signs - Wikipedia

    en.wikipedia.org/wiki/Descartes'_rule_of_signs

    Any nth degree polynomial has exactly n roots in the complex plane, if counted according to multiplicity. So if f(x) is a polynomial with real coefficients which does not have a root at 0 (that is a polynomial with a nonzero constant term) then the minimum number of nonreal roots is equal to (+),

  9. Quadratic function - Wikipedia

    en.wikipedia.org/wiki/Quadratic_function

    The expression ⁠ + + ⁠, especially when treated as an object in itself rather than as a function, is a quadratic polynomial, a polynomial of degree two. In elementary mathematics a polynomial and its associated polynomial function are rarely distinguished and the terms quadratic function and quadratic polynomial are nearly synonymous and ...