Search results
Results from the WOW.Com Content Network
It is almost certain that Euler meant that the sum of the reciprocals of the primes less than n is asymptotic to log log n as n approaches infinity. It turns out this is indeed the case, and a more precise version of this fact was rigorously proved by Franz Mertens in 1874. [3] Thus Euler obtained a correct result by questionable means.
Euler summation is essentially an explicit form of analytic continuation. If a power series converges for small complex z and can be analytically continued to the open disk with diameter from −1 / q + 1 to 1 and is continuous at 1, then its value at q is called the Euler or (E,q) sum of the series Σa n. Euler used it before analytic ...
Because it is a divergent series, it should be interpreted as a formal sum, an abstract mathematical expression combining the unit fractions, rather than as something that can be evaluated to a numeric value. There are many different proofs of the divergence of the harmonic series, surveyed in a 2006 paper by S. J. Kifowit and T. A. Stamps. [13]
The sum of the reciprocals of the powerful numbers is close to 1.9436 . [4] The reciprocals of the factorials sum to the transcendental number e (one of two constants called "Euler's number"). The sum of the reciprocals of the square numbers (the Basel problem) is the transcendental number π 2 / 6 , or ζ(2) where ζ is the Riemann zeta ...
Rigorous proofs require proper and more careful treatment of the divergent terms of the harmonic series. Other proofs make use of the fact that the sum of 1/(p − 1) over the set of perfect powers p, excluding 1 but including repetitions, converges to 1 by demonstrating the equivalence:
In the mathematics of convergent and divergent series, Euler summation is a summation method. That is, it is a method for assigning a value to a series, different from the conventional method of taking limits of partial sums. Given a series Σa n, if its Euler transform converges to a sum, then that sum is called the Euler sum of the original ...
so that divergence is clear given the double-logarithmic divergence of the inverse prime series. (Note that Euler's original proof for inverse prime series used just the converse direction to prove the divergence of the inverse prime series based on that of the Euler product and the harmonic series.)
The sum of the series is approximately equal to 1.644934. [3] The Basel problem asks for the exact sum of this series (in closed form), as well as a proof that this sum is correct. Euler found the exact sum to be / and announced this discovery in 1735. His arguments were based on manipulations that were not justified at the time, although he ...