Search results
Results from the WOW.Com Content Network
Two urns containing white and red balls. In probability and statistics, an urn problem is an idealized mental exercise in which some objects of real interest (such as atoms, people, cars, etc.) are represented as colored balls in an urn or other container. One pretends to remove one or more balls from the urn; the goal is to determine the ...
In probability theory and statistics, the hypergeometric distribution is a discrete probability distribution that describes the probability of successes (random draws for which the object drawn has a specified feature) in draws, without replacement, from a finite population of size that contains exactly objects with that feature, wherein each draw is either a success or a failure.
The enumerations of Theorems one and two can also be found using generating functions involving simple rational expressions. The two cases are very similar; we will look at the case when , that is, Theorem two first. There is only one configuration for a single bin and any given number of objects (because the objects are not distinguished).
There are two broad categories [1] [2] of probability interpretations which can be called "physical" and "evidential" probabilities. Physical probabilities, which are also called objective or frequency probabilities , are associated with random physical systems such as roulette wheels, rolling dice and radioactive atoms.
Partition the sequence into non-overlapping pairs: if the two elements of the pair are equal (00 or 11), discard it; if the two elements of the pair are unequal (01 or 10), keep the first. This yields a sequence of Bernoulli trials with p = 1 / 2 , {\displaystyle p=1/2,} as, by exchangeability, the odds of a given pair being 01 or 10 are equal.
This is the same as saying that the probability of event {1,2,3,4,6} is 5/6. This event encompasses the possibility of any number except five being rolled. The mutually exclusive event {5} has a probability of 1/6, and the event {1,2,3,4,5,6} has a probability of 1, that is, absolute certainty.
A probability is a way of assigning every event a value between zero and one, with the requirement that the event made up of all possible results (in our example, the event {1,2,3,4,5,6}) is assigned a value of one. To qualify as a probability, the assignment of values must satisfy the requirement that for any collection of mutually exclusive ...
Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes.Two events are independent, statistically independent, or stochastically independent [1] if, informally speaking, the occurrence of one does not affect the probability of occurrence of the other or, equivalently, does not affect the odds.