enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Coefficient of determination - Wikipedia

    en.wikipedia.org/wiki/Coefficient_of_determination

    Ordinary least squares regression of Okun's law.Since the regression line does not miss any of the points by very much, the R 2 of the regression is relatively high.. In statistics, the coefficient of determination, denoted R 2 or r 2 and pronounced "R squared", is the proportion of the variation in the dependent variable that is predictable from the independent variable(s).

  3. Pseudo-R-squared - Wikipedia

    en.wikipedia.org/wiki/Pseudo-R-squared

    R 2 L is given by Cohen: [1] =. This is the most analogous index to the squared multiple correlations in linear regression. [3] It represents the proportional reduction in the deviance wherein the deviance is treated as a measure of variation analogous but not identical to the variance in linear regression analysis. [3]

  4. Robust regression - Wikipedia

    en.wikipedia.org/wiki/Robust_regression

    The simplest methods of estimating parameters in a regression model that are less sensitive to outliers than the least squares estimates, is to use least absolute deviations. Even then, gross outliers can still have a considerable impact on the model, motivating research into even more robust approaches.

  5. scikit-learn - Wikipedia

    en.wikipedia.org/wiki/Scikit-learn

    scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...

  6. Out-of-bag error - Wikipedia

    en.wikipedia.org/wiki/Out-of-bag_error

    When bootstrap aggregating is performed, two independent sets are created. One set, the bootstrap sample, is the data chosen to be "in-the-bag" by sampling with replacement.

  7. Deming regression - Wikipedia

    en.wikipedia.org/wiki/Deming_regression

    Assume that the available data (y i, x i) are measured observations of the "true" values (y i *, x i *), which lie on the regression line: = +, = +, where errors ε and η are independent and the ratio of their variances is assumed to be known:

  8. Cross-validation (statistics) - Wikipedia

    en.wikipedia.org/wiki/Cross-validation_(statistics)

    Cross-validation includes resampling and sample splitting methods that use different portions of the data to test and train a model on different iterations. It is often used in settings where the goal is prediction, and one wants to estimate how accurately a predictive model will perform in practice.

  9. Linkage disequilibrium score regression - Wikipedia

    en.wikipedia.org/wiki/Linkage_disequilibrium...

    The approach involves using regression analysis to examine the relationship between linkage disequilibrium scores and the test statistics of the single-nucleotide polymorphisms (SNPs) from the GWAS. Here, the "linkage disequilibrium score" for a SNP "is the sum of LD r 2 measured with all other SNPs". [3]