Search results
Results from the WOW.Com Content Network
This list contains a selection of objects 50 and 99 km in radius (100 km to 199 km in average diameter). The listed objects currently include most objects in the asteroid belt and moons of the giant planets in this size range, but many newly discovered objects in the outer Solar System are missing, such as those included in the following ...
In astronomy, the sizes of celestial objects are often given in terms of their angular diameter as seen from Earth, rather than their actual sizes. Since these angular diameters are typically small, it is common to present them in arcseconds (″). An arcsecond is 1/3600th of one degree (1°) and a radian is 180/π degrees.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate; Language links are at the top of the page.
Vesta (radius 262.7 ± 0.1 km), the second-largest asteroid, appears to have a differentiated interior and therefore likely was once a dwarf planet, but it is no longer very round today. [74] Pallas (radius 255.5 ± 2 km ), the third-largest asteroid, appears never to have completed differentiation and likewise has an irregular shape.
Mercury, the smallest and innermost planet, has no moons, or at least none that can be detected to a diameter of 1.6 km (1.0 mi). [2] For a very short time in 1974, Mercury was thought to have a moon. Venus also has no moons, [3] though reports of a moon around Venus have circulated since the 17th century.
For planet Earth, which can be approximated as an oblate spheroid with radii 6 378.1 km and 6 356.8 km, the mean radius is = (( ) ) / = . The equatorial and polar radii of a planet are often denoted r e {\displaystyle r_{e}} and r p {\displaystyle r_{p}} , respectively.
Solar radius is a unit of distance used to express the size of objects in astronomy relative to the Sun.The solar radius is usually defined as the radius to the layer in the Sun's photosphere where the optical depth equals 2/3: [1]
The planet Earth has a rather slight equatorial bulge; its equatorial diameter is about 43 km (27 mi) greater than its polar diameter, with a difference of about 1 ⁄ 298 of the equatorial diameter. If Earth were scaled down to a globe with an equatorial diameter of 1 metre (3.3 ft), that difference would be only 3 mm (0.12 in).