Search results
Results from the WOW.Com Content Network
Pi bonds result from overlap of atomic orbitals that are in contact through two areas of overlap. Most orbital overlaps that do not include the s-orbital, or have different internuclear axes (for example p x + p y overlap, which does not apply to an s-orbital) are generally all pi bonds. Pi bonds are more diffuse bonds than the sigma bonds.
These are the orbitals that are non-bonding when only σ bonding takes place. Example of π backbonding with carbonyl (CO) ligands. One important π bonding in coordination complexes is metal-to-ligand π bonding, also called π backbonding. It occurs when the LUMOs (lowest unoccupied molecular orbitals) of the ligand are anti-bonding π ...
The localized orbital corresponding to one O-H bond is the sum of these two delocalized orbitals, and the localized orbital for the other O-H bond is their difference; as per Valence bond theory. For multiple bonds and lone pairs, different localization procedures give different orbitals. The Boys and Edmiston-Ruedenberg localization methods ...
Pi bonds are created by the “side-on” interactions of the orbitals. [3] Once again, in molecular orbitals, bonding pi (π) electrons occur when the interaction of the two π atomic orbitals are in-phase. In this case, the electron density of the π orbitals needs to be symmetric along the mirror plane in order to create the bonding ...
Pauling invoked the principle of electroneutrality in a 1952 paper to suggest that pi bonding is present, for example, in molecules with 4 Si-O bonds. [8] The oxygen atoms in such molecules would form polar covalent bonds with the silicon atom because their electronegativity (electron withdrawing power) was higher than that of silicon.
In organic chemistry, neighbouring group participation (NGP, also known as anchimeric assistance) has been defined by the International Union of Pure and Applied Chemistry (IUPAC) as the interaction of a reaction centre with a lone pair of electrons in an atom or the electrons present in a sigma or pi bond contained within the parent molecule but not conjugated with the reaction centre.
Linus Pauling proposed that the double bond in ethylene results from two equivalent tetrahedral orbitals from each atom, [5] which later came to be called banana bonds or tau bonds. [6] Erich Hückel proposed a representation of the double bond as a combination of a sigma bond plus a pi bond.
In chemistry, π backbonding is a π-bonding interaction between a filled (or half filled) orbital of a transition metal atom and a vacant orbital on an adjacent ion or molecule. [ 1 ] [ 2 ] In this type of interaction, electrons from the metal are used to bond to the ligand , which dissipates excess negative charge and stabilizes the metal.