enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    For example, a 2,1 represents the element at the second row and first column of the matrix. In mathematics , a matrix ( pl. : matrices ) is a rectangular array or table of numbers , symbols , or expressions , with elements or entries arranged in rows and columns, which is used to represent a mathematical object or property of such an object.

  3. Basic Linear Algebra Subprograms - Wikipedia

    en.wikipedia.org/wiki/Basic_Linear_Algebra...

    Initially, these subroutines used hard-coded loops for their low-level operations. For example, if a subroutine needed to perform a matrix multiplication, then the subroutine would have three nested loops. Linear algebra programs have many common low-level operations (the so-called "kernel" operations, not related to operating systems). [14]

  4. Row and column vectors - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_vectors

    The transpose (indicated by T) of any row vector is a column vector, and the transpose of any column vector is a row vector: […] = [] and [] = […]. The set of all row vectors with n entries in a given field (such as the real numbers ) forms an n -dimensional vector space ; similarly, the set of all column vectors with m entries forms an m ...

  5. Matrix multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication...

    The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop:

  6. Scalar multiplication - Wikipedia

    en.wikipedia.org/wiki/Scalar_multiplication

    Scalar multiplication of a vector by a factor of 3 stretches the vector out. The scalar multiplications −a and 2a of a vector a. In mathematics, scalar multiplication is one of the basic operations defining a vector space in linear algebra [1] [2] [3] (or more generally, a module in abstract algebra [4] [5]).

  7. Matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication

    A coordinate vector is commonly organized as a column matrix (also called a column vector), which is a matrix with only one column. So, a column vector represents both a coordinate vector, and a vector of the original vector space. A linear map A from a vector space of dimension n into a vector space of dimension m maps a column vector

  8. Elementary matrix - Wikipedia

    en.wikipedia.org/wiki/Elementary_matrix

    The next type of row operation on a matrix A multiplies all elements on row i by m where m is a non-zero scalar (usually a real number). The corresponding elementary matrix is a diagonal matrix, with diagonal entries 1 everywhere except in the i th position, where it is m .

  9. Square matrix - Wikipedia

    en.wikipedia.org/wiki/Square_matrix

    Interchanging two rows or two columns affects the determinant by multiplying it by −1. [10] Using these operations, any matrix can be transformed to a lower (or upper) triangular matrix, and for such matrices the determinant equals the product of the entries on the main diagonal; this provides a method to calculate the determinant of any matrix.