Search results
Results from the WOW.Com Content Network
Positive numbers: Real numbers that are greater than zero. Negative numbers: Real numbers that are less than zero. Because zero itself has no sign, neither the positive numbers nor the negative numbers include zero. When zero is a possibility, the following terms are often used: Non-negative numbers: Real numbers that are greater than or equal ...
In mathematics real is used as an adjective, meaning that the underlying field is the field of the real numbers (or the real field). For example, real matrix, real polynomial and real Lie algebra. The word is also used as a noun, meaning a real number (as in "the set of all reals").
An axiomatic definition of the real numbers consists of defining them as the elements of a complete ordered field. [2] [3] [4] This means the following: The real numbers form a set, commonly denoted , containing two distinguished elements denoted 0 and 1, and on which are defined two binary operations and one binary relation; the operations are called addition and multiplication of real ...
For division to always yield one number rather than an integer quotient plus a remainder, the natural numbers must be extended to rational numbers or real numbers. In these enlarged number systems, division is the inverse operation to multiplication, that is a = c / b means a × b = c, as long as b is not zero.
The real numbers can be defined synthetically as an ordered field satisfying some version of the completeness axiom.Different versions of this axiom are all equivalent in the sense that any ordered field that satisfies one form of completeness satisfies all of them, apart from Cauchy completeness and nested intervals theorem, which are strictly weaker in that there are non Archimedean fields ...
There are infinitely many other non-isomorphic commutative, non-associative, finite-dimensional real divisional algebras, but they all have dimension 2. In fact, every finite-dimensional real commutative division algebra is either 1- or 2-dimensional. This is known as Hopf's theorem, and was proved in 1940. The proof uses methods from topology.
Regular numbers are numbers that evenly divide powers of 60 (or, equivalently, powers of 30). Equivalently, they are the numbers whose only prime divisors are 2, 3, and 5. As an example, 60 2 = 3600 = 48 × 75, so as divisors of a power of 60 both 48 and 75 are regular.
A number that does not evenly divide but leaves a remainder is sometimes called an aliquant part of . An integer > whose only proper divisor is 1 is called a prime number. Equivalently, a prime number is a positive integer that has exactly two positive factors: 1 and itself.