Search results
Results from the WOW.Com Content Network
The direct theorem was Proposition 22 in Book 3 of Euclid's Elements. [3] Equivalently, a convex quadrilateral is cyclic if and only if each exterior angle is equal to the opposite interior angle . In 1836 Duncan Gregory generalized this result as follows: Given any convex cyclic 2 n -gon, then the two sums of alternate interior angles are each ...
Construction of the circumcircle of triangle ABC and the circumcenter Q. The circumcenter of a triangle can be constructed by drawing any two of the three perpendicular bisectors. For three non-collinear points, these two lines cannot be parallel, and the circumcenter is the point where they cross.
These rational numbers are the tangents of the individual quarter angles, using the formula for the tangent of the difference of angles. Rational side lengths for the polygon circumscribed by the unit circle are thus obtained as s k = 4q k / (1 + q k 2). The rational area is A = ∑ k 2q k (1 − q k 2) / (1 + q k 2) 2. These can be made into ...
In geometry, a triangle center or triangle centre is a point in the triangle's plane that is in some sense in the middle of the triangle. For example, the centroid, circumcenter, incenter and orthocenter were familiar to the ancient Greeks, and can be obtained by simple constructions.
In trigonometry, the law of sines, sine law, sine formula, or sine rule is an equation relating the lengths of the sides of any triangle to the sines of its angles. According to the law, = = =, where a, b, and c are the lengths of the sides of a triangle, and α, β, and γ are the opposite angles (see figure 2), while R is the radius of the triangle's circumcircle.
As of 16 October 2024, the list identifies over 65,000 triangle centers [2] and is managed cooperatively by an international team of geometry researchers. [3] This resource is seen as a pillar of the modern geometry. [4] In GeoGebra, this encyclopedia is provided at fingertip by a special command. [5]
Let the given triangle have vertices , , and , opposite the respective sides , , and , as is the standard notation in triangle geometry.In the 1886 paper in which he introduced this point, de Longchamps initially defined it as the center of a circle orthogonal to the three circles , , and , where is centered at with radius and the other two circles are defined symmetrically.
This is known as the AAA similarity theorem. [2] Note that the "AAA" is a mnemonic: each one of the three A's refers to an "angle". Due to this theorem, several authors simplify the definition of similar triangles to only require that the corresponding three angles are congruent. [3]