enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Semantic similarity - Wikipedia

    en.wikipedia.org/wiki/Semantic_similarity

    Semantic similarity is a metric defined over a set of documents or terms, where the idea of distance between items is based on the likeness of their meaning or semantic content [citation needed] as opposed to lexicographical similarity. These are mathematical tools used to estimate the strength of the semantic relationship between units of ...

  3. Word2vec - Wikipedia

    en.wikipedia.org/wiki/Word2vec

    The space of documents is then scanned using HDBSCAN, [20] and clusters of similar documents are found. Next, the centroid of documents identified in a cluster is considered to be that cluster's topic vector. Finally, top2vec searches the semantic space for word embeddings located near to the topic vector to ascertain the 'meaning' of the topic ...

  4. Explicit semantic analysis - Wikipedia

    en.wikipedia.org/wiki/Explicit_semantic_analysis

    CL-ESA exploits a document-aligned multilingual reference collection (e.g., again, Wikipedia) to represent a document as a language-independent concept vector. The relatedness of two documents in different languages is assessed by the cosine similarity between the corresponding vector representations.

  5. Vector space model - Wikipedia

    en.wikipedia.org/wiki/Vector_space_model

    Candidate documents from the corpus can be retrieved and ranked using a variety of methods. Relevance rankings of documents in a keyword search can be calculated, using the assumptions of document similarities theory, by comparing the deviation of angles between each document vector and the original query vector where the query is represented as a vector with same dimension as the vectors that ...

  6. Latent semantic analysis - Wikipedia

    en.wikipedia.org/wiki/Latent_semantic_analysis

    Animation of the topic detection process in a document-word matrix. Every column corresponds to a document, every row to a word. A cell stores the weighting of a word in a document (e.g. by tf-idf), dark cells indicate high weights. LSA groups both documents that contain similar words, as well as words that occur in a similar set of documents.

  7. Word embedding - Wikipedia

    en.wikipedia.org/wiki/Word_embedding

    The notion of a semantic space with lexical items (words or multi-word terms) represented as vectors or embeddings is based on the computational challenges of capturing distributional characteristics and using them for practical application to measure similarity between words, phrases, or entire documents. The first generation of semantic space ...

  8. Distributional semantics - Wikipedia

    en.wikipedia.org/wiki/Distributional_semantics

    Distributional semantic models have been applied successfully to the following tasks: finding semantic similarity between words and multi-word expressions; word clustering based on semantic similarity; automatic creation of thesauri and bilingual dictionaries; word sense disambiguation; expanding search requests using synonyms and associations;

  9. Similarity search - Wikipedia

    en.wikipedia.org/wiki/Similarity_search

    Similarity search is the most general term used for a range of mechanisms which share the principle of searching (typically very large) spaces of objects where the only available comparator is the similarity between any pair of objects. This is becoming increasingly important in an age of large information repositories where the objects ...