Search results
Results from the WOW.Com Content Network
The classic example of a dehydration reaction is the Fischer esterification, which involves treating a carboxylic acid with an alcohol to give an ester RCO 2 H + R′OH ⇌ RCO 2 R′ + H 2 O. Often such reactions require the presence of a dehydrating agent, i.e. a substance that reacts with water.
Formation of a secondary alcohol via alkene reduction and hydration is shown: The hydroboration-oxidation and oxymercuration-reduction of alkenes are more reliable in organic synthesis. Alkenes react with N-bromosuccinimide and water in halohydrin formation reaction. Amines can be converted to diazonium salts, which are then hydrolyzed.
Alcohol oxidation is a collection of oxidation reactions in organic chemistry that convert alcohols to aldehydes, ketones, carboxylic acids, and esters. The reaction mainly applies to primary and secondary alcohols. Secondary alcohols form ketones, while primary alcohols form aldehydes or carboxylic acids. [1] A variety of oxidants can be used.
In organic chemistry, a condensation reaction is a type of chemical reaction in which two molecules are combined to form a single molecule, usually with the loss of a small molecule such as water. [1] If water is lost, the reaction is also known as a dehydration synthesis.
In chemistry, a hydration reaction is a chemical reaction in which a substance combines with water. In organic chemistry, water is added to an unsaturated substrate, which is usually an alkene or an alkyne. This type of reaction is employed industrially to produce ethanol, isopropanol, and butan-2-ol. [1]
Alkenes react with percarboxylic acids and even hydrogen peroxide to yield epoxides: RCH=CH 2 + RCO 3 H → RCHOCH 2 + RCO 2 H. For ethylene, the epoxidation is conducted on a very large scale industrially using oxygen in the presence of silver-based catalysts: C 2 H 4 + 1/ 2 O 2 → C 2 H 4 O. Alkenes react with ozone, leading to the scission ...
For example, polyester chains grow by reaction of alcohol and carboxylic acid groups to form ester links with loss of water. However, there are exceptions; for example polyurethanes are step-growth polymers formed from isocyanate and alcohol bifunctional monomers) without loss of water or other volatile molecules, and are classified as addition ...
Dehydrogenation is important, both as a useful reaction and a serious problem. At its simplest, it is a useful way of converting alkanes, which are relatively inert and thus low-valued, to olefins, which are reactive and thus more valuable. Alkenes are precursors to aldehydes (R−CH=O), alcohols (R−OH), polymers, and aromatics. [1]