Search results
Results from the WOW.Com Content Network
More precisely, let f be a function from a complex curve M to the complex numbers. This function is holomorphic (resp. meromorphic) in a neighbourhood of a point z of M if there is a chart ϕ {\displaystyle \phi } such that f ∘ ϕ − 1 {\displaystyle f\circ \phi ^{-1}} is holomorphic (resp. meromorphic) in a neighbourhood of ϕ ( z ...
If a doubly periodic function is also a complex function that satisfies the Cauchy–Riemann equations and provides an analytic function away from some set of isolated poles – in other words, a meromorphic function – then a lot of information about such a function can be obtained by applying some basic theorems from complex analysis. A non ...
A function that is absolutely monotonic on [,) can be extended to a function that is not only analytic on the real line but is even the restriction of an entire function to the real line. The big Bernshtein theorem : A function f ( x ) {\displaystyle f(x)} that is absolutely monotonic on ( − ∞ , 0 ] {\displaystyle (-\infty ,0]} can be ...
Complex analysis is particularly concerned with the analytic functions of complex variables (or, more generally, meromorphic functions). Because the separate real and imaginary parts of any analytic function must satisfy Laplace's equation, complex analysis is widely applicable to two-dimensional problems in physics.
In a vector space, the additive inverse −v (often called the opposite vector of v) has the same magnitude as v and but the opposite direction. [11] In modular arithmetic, the modular additive inverse of x is the number a such that a + x ≡ 0 (mod n) and always exists. For example, the inverse of 3 modulo 11 is 8, as 3 + 8 ≡ 0 (mod 11). [12]
A complex valued function is conjugate symmetric if and only if its real part is an even function and its imaginary part is an odd function. A typical example of a conjugate symmetric function is the cis function = + Conjugate antisymmetry: A complex-valued function of a real argument : is called conjugate antisymmetric if:
Analyticity of complex functions is a more restrictive property, as it has more restrictive necessary conditions and complex analytic functions have more structure than their real-line counterparts. [6] According to Liouville's theorem, any bounded complex analytic function defined on the whole complex plane is constant. The corresponding ...
In mathematics, the Laurent series of a complex function is a representation of that function as a power series which includes terms of negative degree. It may be used to express complex functions in cases where a Taylor series expansion cannot be applied.