enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Zeros and poles - Wikipedia

    en.wikipedia.org/wiki/Zeros_and_poles

    More precisely, let f be a function from a complex curve M to the complex numbers. This function is holomorphic (resp. meromorphic) in a neighbourhood of a point z of M if there is a chart ϕ {\displaystyle \phi } such that f ∘ ϕ − 1 {\displaystyle f\circ \phi ^{-1}} is holomorphic (resp. meromorphic) in a neighbourhood of ϕ ( z ...

  3. Doubly periodic function - Wikipedia

    en.wikipedia.org/wiki/Doubly_periodic_function

    If a doubly periodic function is also a complex function that satisfies the Cauchy–Riemann equations and provides an analytic function away from some set of isolated poles – in other words, a meromorphic function – then a lot of information about such a function can be obtained by applying some basic theorems from complex analysis. A non ...

  4. Absolutely and completely monotonic functions and sequences

    en.wikipedia.org/wiki/Absolutely_and_completely...

    A function that is absolutely monotonic on [,) can be extended to a function that is not only analytic on the real line but is even the restriction of an entire function to the real line. The big Bernshtein theorem : A function f ( x ) {\displaystyle f(x)} that is absolutely monotonic on ( − ∞ , 0 ] {\displaystyle (-\infty ,0]} can be ...

  5. Mathematical analysis - Wikipedia

    en.wikipedia.org/wiki/Mathematical_analysis

    Complex analysis is particularly concerned with the analytic functions of complex variables (or, more generally, meromorphic functions). Because the separate real and imaginary parts of any analytic function must satisfy Laplace's equation, complex analysis is widely applicable to two-dimensional problems in physics.

  6. Additive inverse - Wikipedia

    en.wikipedia.org/wiki/Additive_inverse

    In a vector space, the additive inverse −v (often called the opposite vector of v) has the same magnitude as v and but the opposite direction. [11] In modular arithmetic, the modular additive inverse of x is the number a such that a + x ≡ 0 (mod n) and always exists. For example, the inverse of 3 modulo 11 is 8, as 3 + 8 ≡ 0 (mod 11). [12]

  7. Even and odd functions - Wikipedia

    en.wikipedia.org/wiki/Even_and_odd_functions

    A complex valued function is conjugate symmetric if and only if its real part is an even function and its imaginary part is an odd function. A typical example of a conjugate symmetric function is the cis function = ⁡ + ⁡ Conjugate antisymmetry: A complex-valued function of a real argument : is called conjugate antisymmetric if:

  8. Analytic function - Wikipedia

    en.wikipedia.org/wiki/Analytic_function

    Analyticity of complex functions is a more restrictive property, as it has more restrictive necessary conditions and complex analytic functions have more structure than their real-line counterparts. [6] According to Liouville's theorem, any bounded complex analytic function defined on the whole complex plane is constant. The corresponding ...

  9. Laurent series - Wikipedia

    en.wikipedia.org/wiki/Laurent_series

    In mathematics, the Laurent series of a complex function is a representation of that function as a power series which includes terms of negative degree. It may be used to express complex functions in cases where a Taylor series expansion cannot be applied.