Search results
Results from the WOW.Com Content Network
In decision problem versions of the art gallery problem, one is given as input both a polygon and a number k, and must determine whether the polygon can be guarded with k or fewer guards. This problem is ∃ R {\displaystyle \exists \mathbb {R} } -complete , as is the version where the guards are restricted to the edges of the polygon. [ 10 ]
Algorithms to solve the hospitals/residents problem can be hospital-oriented (as the NRMP was before 1995) [15] or resident-oriented. This problem was solved, with an algorithm, in the same original paper by Gale and Shapley, in which the stable marriage problem was solved.
The Dijkstra algorithm originally was proposed as a solver for the single-source-shortest-paths problem. However, the algorithm can easily be used for solving the All-Pair-Shortest-Paths problem by executing the Single-Source variant with each node in the role of the root node. In pseudocode such an implementation could look as follows:
Feder (1994) describes an algorithm for efficiently listing all solutions to a given 2-satisfiability instance, and for solving several related problems. [33] There also exist algorithms for finding two satisfying assignments that have the maximal Hamming distance from each other.
In this decision problem, the input is a graph G and a number k; the desired output is yes if G contains a path of k or more edges, and no otherwise. [1] If the longest path problem could be solved in polynomial time, it could be used to solve this decision problem, by finding a longest path and then comparing its length to the number k ...
By using the recursive algorithm to solve a given problem, switching to the iterative algorithm for its recursive calls, and then switching again to Seidel's algorithm for the calls made by the iterative algorithm, it is possible solve a given LP-type problem using O(dn + d! d O(1) log n) violation tests.
This is an unbalanced assignment problem. One way to solve it is to invent a fourth dummy task, perhaps called "sitting still doing nothing", with a cost of 0 for the taxi assigned to it. This reduces the problem to a balanced assignment problem, which can then be solved in the usual way and still give the best solution to the problem.
There are classical sequential algorithms which solve this problem, such as Dijkstra's algorithm. In this article, however, we present two parallel algorithms solving this problem. Another variation of the problem is the all-pairs-shortest-paths (APSP) problem, which also has parallel approaches: Parallel all-pairs shortest path algorithm.