Search results
Results from the WOW.Com Content Network
The confidence interval can be expressed in terms of a long-run frequency in repeated samples (or in resampling): "Were this procedure to be repeated on numerous samples, the proportion of calculated 95% confidence intervals that encompassed the true value of the population parameter would tend toward 95%."
The probability density function (PDF) for the Wilson score interval, plus PDF s at interval bounds. Tail areas are equal. Since the interval is derived by solving from the normal approximation to the binomial, the Wilson score interval ( , + ) has the property of being guaranteed to obtain the same result as the equivalent z-test or chi-squared test.
Referring to the example given above, the probability that the population proportion is in the range of the confidence interval is either 1 or 0. That is, the parameter is included in the interval range or it is not. The main purpose of a confidence interval is to better illustrate what the ideal value for a parameter could possibly be.
Comparison of the rule of three to the exact binomial one-sided confidence interval with no positive samples. In statistical analysis, the rule of three states that if a certain event did not occur in a sample with n subjects, the interval from 0 to 3/ n is a 95% confidence interval for the rate of occurrences in the population.
The bootstrap distribution of a parameter-estimator is often used to calculate confidence intervals for its population-parameter. [2] A variety of methods for constructing the confidence intervals have been proposed, although there is disagreement which method is the best.
The "68–95–99.7 rule" is often used to quickly get a rough probability estimate of something, given its standard deviation, if the population is assumed to be normal. It is also used as a simple test for outliers if the population is assumed normal, and as a normality test if the population is potentially not normal.
when the probability distribution of the value is known, it can be used to calculate an exact confidence interval; when the probability distribution is unknown, Chebyshev's or the Vysochanskiï–Petunin inequalities can be used to calculate a conservative confidence interval; and
Given a sample from a normal distribution, whose parameters are unknown, it is possible to give prediction intervals in the frequentist sense, i.e., an interval [a, b] based on statistics of the sample such that on repeated experiments, X n+1 falls in the interval the desired percentage of the time; one may call these "predictive confidence intervals".