Search results
Results from the WOW.Com Content Network
The expansion of the universe can be understood as resulting from an initial condition in which the contents of the universe are flying apart. The mutual gravitational attraction of the matter and radiation within the universe gradually slows this expansion over time, but their density is too low to prevent continued expansion. [20]
The accelerated expansion of the universe is thought to have begun since the universe entered its dark-energy-dominated era roughly 5 billion years ago. [ 8 ] [ notes 1 ] Within the framework of general relativity , an accelerated expansion can be accounted for by a positive value of the cosmological constant Λ , equivalent to the presence of ...
The Big Bang is a physical theory that describes how the universe expanded from an initial state of high density and temperature. [1] The concept of an expanding universe was scientifically originated by physicist Alexander Friedmann in 1922 with the mathematical derivation of the Friedmann equations.
Two years of data from NASA's James Webb Space Telescope have now validated the Hubble Space Telescope's earlier finding that the rate of the universe's expansion is faster - by about 8% - than ...
The thinning of matter over time reduces the ability of the matter to gravitationally decelerate the expansion of the universe; in contrast, dark energy is a constant factor tending to accelerate the expansion of the universe. The universe's expansion passed an inflection point about five or six billion years ago when the universe entered the ...
In physical cosmology, cosmic inflation, cosmological inflation, or just inflation, is a theory of exponential expansion of space in the very early universe.Following the inflationary period, the universe continued to expand, but at a slower rate.
The universe is now an almost pure vacuum (possibly accompanied with the presence of a false vacuum). The expansion of the universe slowly causes itself to cool down to absolute zero. The universe now reaches an even lower energy state than the earlier one mentioned. [50] [51]
The expansion of the universe is parameterized by a dimensionless scale factor = (with time counted from the birth of the universe), defined relative to the present time, so = =; the usual convention in cosmology is that subscript 0 denotes present-day values, so denotes the age of the universe.