Search results
Results from the WOW.Com Content Network
The theorem is frequently referred to as the division algorithm (although it is a theorem and not an algorithm), because its proof as given below lends itself to a simple division algorithm for computing q and r (see the section Proof for more). Division is not defined in the case where b = 0; see division by zero.
As a consequence, the only commutative division algebras are R and C. Also note that H is not a C-algebra. If it were, then the center of H has to contain C, but the center of H is R. This theorem is closely related to Hurwitz's theorem, which states that the only real normed division algebras are R, C, H, and the (non-associative) algebra O.
Although a later proof was found using algebraic geometry, no direct algebraic proof is known. The fundamental theorem of algebra is a corollary of Hopf's theorem. Dropping the requirement of commutativity, Hopf generalized his result: Any finite-dimensional real division algebra must have dimension a power of 2.
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
Ruffini's rule can be used when one needs the quotient of a polynomial P by a binomial of the form . (When one needs only the remainder, the polynomial remainder theorem provides a simpler method.) A typical example, where one needs the quotient, is the factorization of a polynomial p ( x ) {\displaystyle p(x)} for which one knows a root r :
Another abbreviated method is polynomial short division (Blomqvist's method). Polynomial long division is an algorithm that implements the Euclidean division of polynomials, which starting from two polynomials A (the dividend) and B (the divisor) produces, if B is not zero, a quotient Q and a remainder R such that A = BQ + R,
Proof of Bertrand's postulate; Fermat's theorem on sums of two squares; Two proofs of the Law of quadratic reciprocity; Proof of Wedderburn's little theorem asserting that every finite division ring is a field; Four proofs of the Basel problem; Proof that e is irrational (also showing the irrationality of certain related numbers) Hilbert's ...
In mathematics, Wedderburn's little theorem states that every finite division ring is a field; thus, every finite domain is a field. In other words, for finite rings, there is no distinction between domains, division rings and fields. The Artin–Zorn theorem generalizes the theorem to alternative rings: every finite alternative division ring ...