enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Curl (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Curl_(mathematics)

    This formula shows how to calculate the curl of F in any coordinate system, and how to extend the curl to any oriented three-dimensional Riemannian manifold. Since this depends on a choice of orientation, curl is a chiral operation. In other words, if the orientation is reversed, then the direction of the curl is also reversed.

  3. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    C: curl, G: gradient, L: Laplacian, CC: curl of curl. Each arrow is labeled with the result of an identity, specifically, the result of applying the operator at the arrow's tail to the operator at its head. The blue circle in the middle means curl of curl exists, whereas the other two red circles (dashed) mean that DD and GG do not exist.

  4. Del in cylindrical and spherical coordinates - Wikipedia

    en.wikipedia.org/wiki/Del_in_cylindrical_and...

    This article uses the standard notation ISO 80000-2, which supersedes ISO 31-11, for spherical coordinates (other sources may reverse the definitions of θ and φ): . The polar angle is denoted by [,]: it is the angle between the z-axis and the radial vector connecting the origin to the point in question.

  5. Vorticity equation - Wikipedia

    en.wikipedia.org/wiki/Vorticity_equation

    The vorticity equation of fluid dynamics describes the evolution of the vorticity ω of a particle of a fluid as it moves with its flow; that is, the local rotation of the fluid (in terms of vector calculus this is the curl of the flow velocity). The governing equation is:

  6. Del - Wikipedia

    en.wikipedia.org/wiki/Del

    Del is a very convenient mathematical notation for those three operations (gradient, divergence, and curl) that makes many equations easier to write and remember. The del symbol (or nabla) can be formally defined as a vector operator whose components are the corresponding partial derivative operators.

  7. Circulation (physics) - Wikipedia

    en.wikipedia.org/wiki/Circulation_(physics)

    Circulation can be related to curl of a vector field V and, more specifically, to vorticity if the field is a fluid velocity field, =.. By Stokes' theorem, the flux of curl or vorticity vectors through a surface S is equal to the circulation around its perimeter, [4] = = =

  8. Magnetic vector potential - Wikipedia

    en.wikipedia.org/wiki/Magnetic_vector_potential

    In classical electromagnetism, magnetic vector potential (often called A) is the vector quantity defined so that its curl is equal to the magnetic field: =.Together with the electric potential φ, the magnetic vector potential can be used to specify the electric field E as well.

  9. Stream function - Wikipedia

    en.wikipedia.org/wiki/Stream_function

    Substituting this result into the curl-divergence equation yields = (i.e., the flow is incompressible). In summary, the stream function for two-dimensional plane flow exists if and only if the flow is incompressible.