enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lambda calculus - Wikipedia

    en.wikipedia.org/wiki/Lambda_calculus

    Lambda Calculus as a Workflow Model by Peter Kelly, Paul Coddington, and Andrew Wendelborn; mentions graph reduction as a common means of evaluating lambda expressions and discusses the applicability of lambda calculus for distributed computing (due to the Church–Rosser property, which enables parallel graph reduction for lambda expressions).

  3. Reduction strategy - Wikipedia

    en.wikipedia.org/wiki/Reduction_strategy

    In the context of the lambda calculus, normal-order reduction refers to leftmost-outermost reduction in the sense given above. [10] Normal-order reduction is normalizing, in the sense that if a term has a normal form, then normalā€order reduction will eventually reach it, hence the name normal. This is known as the standardization theorem. [11 ...

  4. Fixed-point combinator - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_combinator

    The Y combinator is an implementation of a fixed-point combinator in lambda calculus. Fixed-point combinators may also be easily defined in other functional and imperative languages. The implementation in lambda calculus is more difficult due to limitations in lambda calculus. The fixed-point combinator may be used in a number of different areas:

  5. Lambda calculus definition - Wikipedia

    en.wikipedia.org/wiki/Lambda_calculus_definition

    The purpose of β-reduction is to calculate a value. A value in lambda calculus is a function. So β-reduction continues until the expression looks like a function abstraction. A lambda expression that cannot be reduced further, by either β-redex, or η-redex is in normal form. Note that alpha-conversion may convert functions.

  6. Krivine machine - Wikipedia

    en.wikipedia.org/wiki/Krivine_machine

    A head normal form is a term of the lambda calculus which is not a head redex. [a] A head reduction is a (non empty) sequence of contractions of a term which contracts head redexes. A head reduction of a term t (which is supposed not to be in head normal form) is a head reduction which starts from a term t and ends on a head normal form. From ...

  7. Explicit substitution - Wikipedia

    en.wikipedia.org/wiki/Explicit_substitution

    In computer science, lambda calculi are said to have explicit substitutions if they pay special attention to the formalization of the process of substitution.This is in contrast to the standard lambda calculus where substitutions are performed by beta reductions in an implicit manner which is not expressed within the calculus; the "freshness" conditions in such implicit calculi are a notorious ...

  8. Church–Rosser theorem - Wikipedia

    en.wikipedia.org/wiki/Church–Rosser_theorem

    Viewing the lambda calculus as an abstract rewriting system, the Church–Rosser theorem states that the reduction rules of the lambda calculus are confluent. As a consequence of the theorem, a term in the lambda calculus has at most one normal form, justifying reference to "the normal form" of a given normalizable term.

  9. Church encoding - Wikipedia

    en.wikipedia.org/wiki/Church_encoding

    In mathematics, Church encoding is a means of representing data and operators in the lambda calculus. The Church numerals are a representation of the natural numbers using lambda notation. The method is named for Alonzo Church, who first encoded data in the lambda calculus this way.