Search results
Results from the WOW.Com Content Network
A simple harmonic oscillator is an oscillator that is neither driven nor damped.It consists of a mass m, which experiences a single force F, which pulls the mass in the direction of the point x = 0 and depends only on the position x of the mass and a constant k.
It corresponds to the underdamped case of damped second-order systems, or underdamped second-order differential equations. [6] Damped sine waves are commonly seen in science and engineering, wherever a harmonic oscillator is losing energy faster than it is being supplied. A true sine wave starting at time = 0 begins at the origin (amplitude = 0).
This plot corresponds to solutions of the complete Langevin equation for a lightly damped harmonic oscillator, obtained using the Euler–Maruyama method. The left panel shows the time evolution of the phase portrait at different temperatures. The right panel captures the corresponding equilibrium probability distributions.
There is a clear analogy here between these equations and those that defined the evolution of the in-phase and out-of-phase components of oscillation in the classical case. Now, however, there is a third term w , which can be interpreted as the population difference between the excited and ground state (varying from −1 to represent completely ...
This is called the damped resonance frequency or the damped natural frequency. It is the frequency the circuit will naturally oscillate at if not driven by an external source. The resonance frequency, ω 0 , which is the frequency at which the circuit will resonate when driven by an external oscillation, may often be referred to as the undamped ...
The Duffing equation (or Duffing oscillator), named after Georg Duffing (1861–1944), is a non-linear second-order differential equation used to model certain damped and driven oscillators. The equation is given by ¨ + ˙ + + = (), where the (unknown) function = is the displacement at time t, ˙ is the first derivative of with respect to ...
The Q factor is a parameter that describes the resonance behavior of an underdamped harmonic oscillator (resonator). Sinusoidally driven resonators having higher Q factors resonate with greater amplitudes (at the resonant frequency) but have a smaller range of frequencies around that frequency for which they resonate; the range of frequencies for which the oscillator resonates is called the ...
Figure 2: A simple harmonic oscillator with small periodic damping term given by ¨ + ˙ + =, =, ˙ =; =.The numerical simulation of the original equation (blue solid line) is compared with averaging system (orange dashed line) and the crude averaged system (green dash-dotted line). The left plot displays the solution evolved in time and ...