enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lambda calculus - Wikipedia

    en.wikipedia.org/wiki/Lambda_calculus

    Lambda calculus is Turing complete, that is, it is a universal model of computation that can be used to simulate any Turing machine. [3] Its namesake, the Greek letter lambda (λ), is used in lambda expressions and lambda terms to denote binding a variable in a function.

  3. Anonymous recursion - Wikipedia

    en.wikipedia.org/wiki/Anonymous_recursion

    This is particularly important for the lambda calculus, which has anonymous unary functions, but is able to compute any recursive function. This anonymous recursion can be produced generically via fixed-point combinators .

  4. Category:Lambda calculus - Wikipedia

    en.wikipedia.org/wiki/Category:Lambda_calculus

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more

  5. To Mock a Mockingbird - Wikipedia

    en.wikipedia.org/wiki/To_Mock_a_Mockingbird

    To Mock a Mockingbird and Other Logic Puzzles: Including an Amazing Adventure in Combinatory Logic (1985, ISBN 0-19-280142-2) is a book by the mathematician and logician Raymond Smullyan. It contains many nontrivial recreational puzzles of the sort for which Smullyan is well known.

  6. Fixed-point combinator - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_combinator

    The Y combinator is an implementation of a fixed-point combinator in lambda calculus. Fixed-point combinators may also be easily defined in other functional and imperative languages. The implementation in lambda calculus is more difficult due to limitations in lambda calculus. The fixed-point combinator may be used in a number of different areas:

  7. Typed lambda calculus - Wikipedia

    en.wikipedia.org/wiki/Typed_lambda_calculus

    A typed lambda calculus is a typed formalism that uses the lambda-symbol to denote anonymous function abstraction.In this context, types are usually objects of a syntactic nature that are assigned to lambda terms; the exact nature of a type depends on the calculus considered (see kinds below).

  8. Kleene–Rosser paradox - Wikipedia

    en.wikipedia.org/wiki/Kleene–Rosser_paradox

    In mathematics, the Kleene–Rosser paradox is a paradox that shows that certain systems of formal logic are inconsistent, in particular the version of Haskell Curry's combinatory logic introduced in 1930, and Alonzo Church's original lambda calculus, introduced in 1932–1933, both originally intended as systems of formal logic.

  9. Simply typed lambda calculus - Wikipedia

    en.wikipedia.org/wiki/Simply_typed_lambda_calculus

    In the 1930s Alonzo Church sought to use the logistic method: [a] his lambda calculus, as a formal language based on symbolic expressions, consisted of a denumerably infinite series of axioms and variables, [b] but also a finite set of primitive symbols, [c] denoting abstraction and scope, as well as four constants: negation, disjunction, universal quantification, and selection respectively ...