Search results
Results from the WOW.Com Content Network
An electron donating group (EDG) or electron releasing group (ERG, Z in structural formulas) is an atom or functional group that donates some of its electron density into a conjugated π system via resonance (mesomerism) or inductive effects (or induction)—called +M or +I effects, respectively—thus making the π system more nucleophilic.
The captodative effect is the stabilization of radicals by a synergistic effect of an electron-withdrawing substituent and an electron-donating substituent. [2] [3] The name originates as the electron-withdrawing group (EWG) is sometimes called the "captor" group, whilst the electron-donating group (EDG) is the "dative" substituent. [3]
In Organic chemistry, the inductive effect in a molecule is a local change in the electron density due to electron-withdrawing or electron-donating groups elsewhere in the molecule, resulting in a permanent dipole in a bond. [1] It is present in a σ (sigma) bond, unlike the electromeric effect which is present in a π (pi) bond.
The mesomeric effect is negative (–M) when the substituent is an electron-withdrawing group, and the effect is positive (+M) when the substituent is an electron donating group. Below are two examples of the +M and –M effect. Additionally, the functional groups that contribute to each type of resonance are given below.
Many of the above functional groups are electron-donating, but electron donation is not necessary to achieve SOMO delocalization, and electron withdrawal functions just as well. [3]: 978 Indeed, radicals are particularly stable if they can delocalize into both an electron-withdrawing and an electron-donating group, the "capto-dative effect". [16]
Electron-withdrawing groups are the opposite effect of electron-donating groups (EDGs). Both describe functional groups , however, electron-withdrawing groups pull electron density away from a molecule, whereas EDGs push electron density onto a substituent.
Groups that are electron-withdrawing by resonance decrease the electron density especially at positions 2, 4 and 6, leaving positions 3 and 5 as the ones with comparably higher reactivity, so these types of groups are meta directors (see below).
When this center is an electron rich carbanion or an alkoxide anion, the presence of the electron-withdrawing substituent has a stabilizing effect. Similarly, an electron-releasing group (ERG) or electron-donating group (EDG) releases electrons into a reaction center and as such stabilizes electron deficient carbocations.