Search results
Results from the WOW.Com Content Network
The duodecimal system, also known as base twelve or dozenal, is a positional numeral system using twelve as its base.In duodecimal, the number twelve is denoted "10", meaning 1 twelve and 0 units; in the decimal system, this number is instead written as "12" meaning 1 ten and 2 units, and the string "10" means ten.
"A base is a natural number B whose powers (B multiplied by itself some number of times) are specially designated within a numerical system." [1]: 38 The term is not equivalent to radix, as it applies to all numerical notation systems (not just positional ones with a radix) and most systems of spoken numbers. [1]
The numbers 200-900 would be confused easily with 22 to 29 if they were used in chemistry. khīlioi = 1000, diskhīlioi = 2000, triskhīlioi = 3000, etc. 13 to 19 are formed by starting with the Greek word for the number of ones, followed by και (the Greek word for 'and'), followed by δέκα (the Greek word for 'ten').
The number e is a mathematical constant approximately equal to 2.71828 that is the base of the natural logarithm and exponential function.It is sometimes called Euler's number, after the Swiss mathematician Leonhard Euler, though this can invite confusion with Euler numbers, or with Euler's constant, a different constant typically denoted .
A ternary / ˈ t ɜːr n ər i / numeral system (also called base 3 or trinary [1]) has three as its base. Analogous to a bit , a ternary digit is a trit ( tri nary dig it ). One trit is equivalent to log 2 3 (about 1.58496) bits of information .
While base ten is normally used for scientific notation, powers of other bases can be used too, [25] base 2 being the next most commonly used one. For example, in base-2 scientific notation, the number 1001 b in binary (=9 d) is written as 1.001 b × 2 d 11 b or 1.001 b × 10 b 11 b using binary numbers (or shorter 1.001 × 10 11 if binary ...
Similarly, the expression b 3 = b · b · b is called "the cube of b" or "b cubed", because the volume of a cube with side-length b is b 3. When an exponent is a positive integer, that exponent indicates how many copies of the base are multiplied together. For example, 3 5 = 3 · 3 · 3 · 3 · 3 = 243.
Of particular interest are the quater-imaginary base (base 2i) and the base −1 ± i systems discussed below, both of which can be used to finitely represent the Gaussian integers without sign. Base −1 ± i, using digits 0 and 1, was proposed by S. Khmelnik in 1964 [3] and Walter F. Penney in 1965. [4] [6]