enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Helmholtz equation - Wikipedia

    en.wikipedia.org/wiki/Helmholtz_equation

    The Helmholtz equation has a variety of applications in physics and other sciences, including the wave equation, the diffusion equation, and the Schrödinger equation for a free particle. In optics, the Helmholtz equation is the wave equation for the electric field. [1] The equation is named after Hermann von Helmholtz, who studied it in 1860. [2]

  3. Kirchhoff–Helmholtz integral - Wikipedia

    en.wikipedia.org/wiki/Kirchhoff–Helmholtz_integral

    The Kirchhoff–Helmholtz integral combines the Helmholtz equation with the Kirchhoff integral theorem [1] to produce a method applicable to acoustics, [2] seismology [3] and other disciplines involving wave propagation.

  4. Green's function - Wikipedia

    en.wikipedia.org/wiki/Green's_function

    The primary use of Green's functions in mathematics is to solve non-homogeneous boundary value problems. In modern theoretical physics , Green's functions are also usually used as propagators in Feynman diagrams ; the term Green's function is often further used for any correlation function .

  5. Separation of variables - Wikipedia

    en.wikipedia.org/wiki/Separation_of_variables

    If one can evaluate the two integrals, one can find a solution to the differential equation. Observe that this process effectively allows us to treat the derivative as a fraction which can be separated. This allows us to solve separable differential equations more conveniently, as demonstrated in the example below.

  6. Green's identities - Wikipedia

    en.wikipedia.org/wiki/Green's_identities

    It can be further verified that the above identity also applies when ψ is a solution to the Helmholtz equation or wave equation and G is the appropriate Green's function. In such a context, this identity is the mathematical expression of the Huygens principle , and leads to Kirchhoff's diffraction formula and other approximations.

  7. Kirchhoff integral theorem - Wikipedia

    en.wikipedia.org/wiki/Kirchhoff_integral_theorem

    The integral has the following form for a monochromatic wave: [2] [3] [4] = [^ ^],where the integration is performed over an arbitrary closed surface S enclosing the observation point , in is the wavenumber, in is the distance from an (infinitesimally small) integral surface element to the point , is the spatial part of the solution of the homogeneous scalar wave equation (i.e., (,) = as the ...

  8. Electromagnetic wave equation - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_wave_equation

    These expansions still solve the original Helmholtz equations for E and B because for a divergence-free field F, ∇ 2 (r ⋅ F) = r ⋅ (∇ 2 F). The resulting expressions for a generic electromagnetic field are:

  9. Boundary element method - Wikipedia

    en.wikipedia.org/wiki/Boundary_element_method

    The boundary element method (BEM) is a numerical computational method of solving linear partial differential equations which have been formulated as integral equations (i.e. in boundary integral form), including fluid mechanics, acoustics, electromagnetics (where the technique is known as method of moments or abbreviated as MoM), [1] fracture mechanics, [2] and contact mechanics.