Search results
Results from the WOW.Com Content Network
An illustration of the five-point stencil in one and two dimensions (top, and bottom, respectively). In numerical analysis, given a square grid in one or two dimensions, the five-point stencil of a point in the grid is a stencil made up of the point itself together with its four "neighbors".
Armadillo is a C++ linear algebra library (matrix and vector maths), aiming towards a good balance between speed and ease of use. [1] It employs template classes, and has optional links to BLAS and LAPACK. The syntax is similar to MATLAB. Blitz++ is a high-performance vector mathematics library written in C++.
In mathematics, to approximate a derivative to an ... −1: 13/8: 0: −13/8: 1: −1/8: 6 −7/240: 3/10: ... For example, the third derivative with a second-order ...
The classical finite-difference approximations for numerical differentiation are ill-conditioned. However, if is a holomorphic function, real-valued on the real line, which can be evaluated at points in the complex plane near , then there are stable methods.
These rules are given in many books, both on elementary and advanced calculus, in pure and applied mathematics. Those in this article (in addition to the above references) can be found in: Mathematical Handbook of Formulas and Tables (3rd edition), S. Lipschutz, M.R. Spiegel, J. Liu, Schaum's Outline Series, 2009, ISBN 978-0-07-154855-7.
In mathematics, the Grünwald–Letnikov derivative is a basic extension of the derivative in fractional calculus that allows one to take the derivative a non-integer number of times. It was introduced by Anton Karl Grünwald (1838–1920) from Prague , in 1867, and by Aleksey Vasilievich Letnikov (1837–1888) in Moscow in 1868.
In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point.
Journal of Computational and Applied Mathematics. 141 (1– 2): 1– 26. Bibcode:2002JCoAM.141....1A. doi: 10.1016/S0377-0427(01)00432-0. Dynamic Equations on Time Scales Special issue of Journal of Computational and Applied Mathematics (2002) Dynamic Equations And Applications Special Issue of Advances in Difference Equations (2006)