Search results
Results from the WOW.Com Content Network
In recent times the catalytic oxidation of cyclohexene by (immobilized) metalloporphyrin complexes has been found to be an efficient way. [7] [8] In laboratory, cyclohexene oxide can also be prepared by reacting cyclohexene with magnesium monoperoxyphthalate (MMPP) in a mixture of isopropanol and water as solvent at room temperature. [9]
Cyclohexene derivatives, such as imines, epoxides, and halonium ions, react with nucleophiles in a stereoselective fashion, affording trans-diaxial addition products. The term “Trans-diaxial addition” describes the mechanism of the addition, however the products are likely to equilibrate by ring flip to the lower energy conformer, placing the new substituents in the equatorial position.
Benzene is converted to cyclohexylbenzene by acid-catalyzed alkylation with cyclohexene. [6] Cyclohexylbenzene is a precursor to both phenol and cyclohexanone. [7] Hydration of cyclohexene gives cyclohexanol, which can be dehydrogenated to give cyclohexanone, a precursor to caprolactam. [8] The oxidative cleavage of cyclohexene gives adipic acid.
1-Methylcyclohexene an organic compound consisting of cyclohexene with a methyl group substituent attached to the alkene group. Two other structural isomers are known: 3-methylcyclohexene and 4-methylcyclohexene. All are colorless volatile liquids. They are specialized reagents.
4-Methylcyclohexene is an organic compound consisting of cyclohexene with a methyl group substituent attached to carbon most distant from the alkene group. Two other structural isomers are known: 1-methylcyclohexene and 3-methylcyclohexene. All are colorless volatile liquids classified as a cyclic olefins. They are specialized reagents.
Moreover, compared to other EHs, LEH accepts a smaller diversity of substrates and is only able to catalyze reactions with limonene-1,2-epoxide, 1-methylcyclohexene oxide, cyclohexene oxide, and indene oxide. Thus, LEH is considered the founding member of a novel EH family, and its mechanistic, structural, and functional details are of special ...
Cyclohexylmethanol can be produced in two step starting with the hydroformylation of cyclohexene. This process also give cyclohexane, resulting from hydrogenation. The resulting cyclohexanecarboxaldehyde is then hydrogenated to give the alcohol. [5] [6]
For cyclohexane, cyclohexene, and cyclohexadiene, dehydrogenation is the conceptually simplest pathway for aromatization. The activation barrier decreases with the degree of unsaturation. Thus, cyclohexadienes are especially prone to aromatization. Formally, dehydrogenation is a redox process. Dehydrogenative aromatization is the reverse of ...