Search results
Results from the WOW.Com Content Network
Year Name Authors References Language Short Description 1983 BHMIE [3]: Craig F. Bohren and Donald R. Huffman [1]Fortran IDL Matlab C Python "Mie solutions" (infinite series) to scattering, absorption and phase function of electromagnetic waves by a homogeneous sphere.
Phase modulation (PM) is a modulation pattern for conditioning communication signals for transmission. It encodes a message signal as variations in the instantaneous phase of a carrier wave . Phase modulation is one of the two principal forms of angle modulation , together with frequency modulation .
The pseudocode below performs the GS algorithm to obtain a phase distribution for the plane "Source", such that its Fourier transform would have the amplitude distribution of the plane "Target". The Gerchberg-Saxton algorithm is one of the most prevalent methods used to create computer-generated holograms .
Otherwise it is called unwrapped phase, which is a continuous function of argument t, assuming s a (t) is a continuous function of t. Unless otherwise indicated, the continuous form should be inferred. Instantaneous phase vs time. The function has two true discontinuities of 180° at times 21 and 59, indicative of amplitude zero-crossings.
Codes for electromagnetic scattering by cylinders – this article list codes for electromagnetic scattering by a cylinder. Majority of existing codes for calculation of electromagnetic scattering by a single cylinder are based on Mie theory , which is an analytical solution of Maxwell's equations in terms of infinite series.
A phase-locked loop or phase lock loop (PLL) is a control system that generates an output signal whose phase is fixed relative to the phase of an input signal. Keeping the input and output phase in lockstep also implies keeping the input and output frequencies the same, thus a phase-locked loop can also track an input frequency.
The group delay and phase delay properties of a linear time-invariant (LTI) system are functions of frequency, giving the time from when a frequency component of a time varying physical quantity—for example a voltage signal—appears at the LTI system input, to the time when a copy of that same frequency component—perhaps of a different physical phenomenon—appears at the LTI system output.
The function is real-valued, positive-homogeneous of degree 1, and infinitely differentiable away from {=}. Also, we assume that does not have any critical points on the support of . Such a function, is usually called a phase function. In some contexts more general functions are considered and still referred to as phase functions.