Search results
Results from the WOW.Com Content Network
Dimethyldichlorosilane is a tetrahedral organosilicon compound with the formula Si(CH 3) 2 Cl 2. At room temperature it is a colorless liquid that readily reacts with water to form both linear and cyclic Si-O chains. Dimethyldichlorosilane is made on an industrial scale as the principal precursor to dimethylsilicone and polysilane compounds.
In chemistry, the mass concentration ρ i (or γ i) is defined as the mass of a constituent m i divided by the volume of the mixture V. [1]= For a pure chemical the mass concentration equals its density (mass divided by volume); thus the mass concentration of a component in a mixture can be called the density of a component in a mixture.
NiCl 2 •6H 2 O + 2 PPh 3 → NiCl 2 (PPh 3) 2 + 6 H 2 O. When allowed to crystallise from chlorinated solvents, the tetrahedral isomer converts to the square planar isomer. The square planar form is red and diamagnetic. The phosphine ligands are trans with respective Ni-P and Ni-Cl distances of 2.24 and 2.17 Å.
2 CH 3 Cl + Si → (CH 3) 4−n SiCl n + other products While this reaction is the standard in industrial silicone production and is nearly identical to the first direct synthesis of methyltrichlorosilane, the overall process is inefficient with respect to methyltrichlorosilane. [ 2 ]
The chemical formula of PDMS is CH 3 [Si(CH 3) 2 O] n Si(CH 3) 3, where n is the number of repeating monomer [Si(CH 3) 2 O] units. [4] Industrial synthesis can begin from dimethyldichlorosilane and water by the following net reaction: n Si(CH 3) 2 Cl 2 + (n+1) H 2 O → HO[Si(CH 3) 2 O] n H + 2n HCl. The polymerization reaction evolves ...
It is also equal to the molar mass (M) divided by the mass density (ρ): = = The molar volume has the SI unit of cubic metres per mole (m 3 /mol), [ 1 ] although it is more typical to use the units cubic decimetres per mole (dm 3 /mol) for gases , and cubic centimetres per mole (cm 3 /mol) for liquids and solids .
Stock and Somieski completed the hydrolysis of dichlorosilane by putting the solution of H 2 SiCl 2 in benzene in brief contact with a large excess of water. [3] [5] A large-scale hydrolysis was done in a mixed ether/alkane solvent system at 0 °C, which gave a mixture of volatile and nonvolatile [H 2 SiO] n.
Charge carrier density, also known as carrier concentration, denotes the number of charge carriers per volume. In SI units, it is measured in m −3. As with any density, in principle it can depend on position. However, usually carrier concentration is given as a single number, and represents the average carrier density over the whole material.