enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quartile - Wikipedia

    en.wikipedia.org/wiki/Quartile

    The three quartiles, resulting in four data divisions, are as follows: The first quartile (Q 1) is defined as the 25th percentile where lowest 25% data is below this point. It is also known as the lower quartile. The second quartile (Q 2) is the median of a data set; thus 50% of the data lies below this point.

  3. Percentile - Wikipedia

    en.wikipedia.org/wiki/Percentile

    The 25th percentile is also known as the first quartile (Q 1), the 50th percentile as the median or second quartile (Q 2), and the 75th percentile as the third quartile (Q 3). For example, the 50th percentile (median) is the score below (or at or below, depending on the definition) which 50% of the scores in the distribution are found.

  4. Five-number summary - Wikipedia

    en.wikipedia.org/wiki/Five-number_summary

    the upper quartile or third quartile; the sample maximum (largest observation) In addition to the median of a single set of data there are two related statistics called the upper and lower quartiles. If data are placed in order, then the lower quartile is central to the lower half of the data and the upper quartile is central to the upper half ...

  5. Interquartile range - Wikipedia

    en.wikipedia.org/wiki/Interquartile_range

    The lower quartile corresponds with the 25th percentile and the upper quartile corresponds with the 75th percentile, so IQR = Q 3 − Q 1 [1]. The IQR is an example of a trimmed estimator, defined as the 25% trimmed range, which enhances the accuracy of dataset statistics by dropping lower contribution, outlying points. [5]

  6. Quantile - Wikipedia

    en.wikipedia.org/wiki/Quantile

    This is the minimum value of the set, so the zeroth quartile in this example would be 3. 3 First quartile The rank of the first quartile is 10×(1/4) = 2.5, which rounds up to 3, meaning that 3 is the rank in the population (from least to greatest values) at which approximately 1/4 of the values are less than the value of the first quartile.

  7. Median - Wikipedia

    en.wikipedia.org/wiki/Median

    Calculating the median in data sets of odd (above) and even (below) observations. The median of a set of numbers is the value separating the higher half from the lower half of a data sample, a population, or a probability distribution. For a data set, it may be thought of as the “middle" value.

  8. Box plot - Wikipedia

    en.wikipedia.org/wiki/Box_plot

    Third quartile (Q 3 or 75th percentile): also known as the upper quartile q n (0.75), it is the median of the upper half of the dataset. [ 7 ] In addition to the minimum and maximum values used to construct a box-plot, another important element that can also be employed to obtain a box-plot is the interquartile range (IQR), as denoted below:

  9. Seven-number summary - Wikipedia

    en.wikipedia.org/wiki/Seven-number_summary

    sample maximum (nominal: lowest hundredth percentile) Note that the middle five of the seven numbers can all be obtained by successive partitioning of the ordered data into subsets of equal size. Extending the seven-number summary by continued partitioning produces the nine-number summary , the eleven-number summary , and so on.