Search results
Results from the WOW.Com Content Network
In statistics, the quartile coefficient of dispersion is a descriptive statistic which measures dispersion and is used to make comparisons within and between data sets. Since it is based on quantile information, it is less sensitive to outliers than measures such as the coefficient of variation .
The three quartiles, resulting in four data divisions, are as follows: The first quartile (Q 1) is defined as the 25th percentile where lowest 25% data is below this point. It is also known as the lower quartile. The second quartile (Q 2) is the median of a data set; thus 50% of the data lies below this point.
The third quartile value for the original example above is determined by 11×(3/4) = 8.25, which rounds up to 9. The ninth value in the population is 15. 15 Fourth quartile Although not universally accepted, one can also speak of the fourth quartile. This is the maximum value of the set, so the fourth quartile in this example would be 20.
Splitting the observations either side of the median gives two groups of four observations. The median of the first group is the lower or first quartile, and is equal to (0 + 1)/2 = 0.5. The median of the second group is the upper or third quartile, and is equal to (27 + 61)/2 = 44. The smallest and largest observations are 0 and 63.
Tukey's range test, also known as Tukey's test, Tukey method, Tukey's honest significance test, or Tukey's HSD (honestly significant difference) test, [1] is a single-step multiple comparison procedure and statistical test.
The lower quartile corresponds with the 25th percentile and the upper quartile corresponds with the 75th percentile, so IQR = Q 3 − Q 1 [1]. The IQR is an example of a trimmed estimator , defined as the 25% trimmed range , which enhances the accuracy of dataset statistics by dropping lower contribution, outlying points. [ 5 ]
For example, my daughter wrote in her homework, "I went to the osen," rather than "I went to the ocean." The teacher hadn't corrected the mistake because the emphasis was on visual cues — a ...
Hilbert's tenth problem: the problem of deciding whether a Diophantine equation (multivariable polynomial equation) has a solution in integers. Determining whether a given initial point with rational coordinates is periodic, or whether it lies in the basin of attraction of a given open set, in a piecewise-linear iterated map in two dimensions ...